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Abstract 

Laser processing is now regarded as a promising tool to reduce the cost and 

complexity of fabricating the formation of localized contacts between heavily doped 

silicon and metal, features which have become an important element in high 

efficiency silicon solar cells, such as a passivated emitter and rear cell (PERC) and 

an interdigitated back contact cell (IBC). However, characterization of localized 

features with conventional PV characterization tools is challenging, mainly due to 

the limitations of spatial resolution. This thesis develops and applies novel 

characterization methods to these localized features using low temperature micro-

photoluminescence spectroscopy (μ-PLS). This technique demonstrates that localized 

features, even single laser pulse processed regions typically tens of micrometres in 

scale, can be investigated directly without the need for specific sample structures and 

their electronic properties can be mapped spatially in the sub-micrometre regime. 

Utilizing the sub-micron precision of these measurements, the laser-induced 

crystallographic damages were investigated at various positions within the laser-

processed region, particularly at specific points such as the boundary/edge of 

processed and unprocessed regions. It was found that the edge, or pulse overlapped 

regions, were significantly more defective than the centre region. The impact of laser 

parameters, such as laser pulse fluence and number of repeat pulses, on laser-induced 

damage was also analysed. Significantly different levels of defect-related PL signals 

were observed after laser processing of the two different substrate surface conditions. 

This suggests that wafer surface preparation can be an important factor impacting on 

the quality of laser-processed silicon.  

The doping profiles of thermally boron-diffused silicon samples, which have 

Gaussian function type doping profiles, can be estimated from the measured PL 

spectra alone. The wavelength of the doping-related PL peak (doping peak) has a 

reliable and simple linear relationship with the surface dopant density on a semi-log 

plot. The PL intensity of the doping peak also shows a linear relationship with the 

doping depth metric (depth factor), but only after considering the reduction of PL 

intensity due to enhanced incomplete dopant ionization at low temperature. Doping 

profiles can be easily reconstructed based on these two linear relationships and their 
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accuracy was verified by comparisons with existing doping profiles (via ECV 

profiling). Mapping of the surface dopant density and the depth factor of micron-

scale locally diffused features was undertaken using 2-D mapping with μ-PLS 

measurements at 2 μm spatial resolution. 

This method was also applied to 532 nm laser-doped silicon to show its 

effectiveness on locally laser-doped features. The doping profiles of laser-doped 

silicon were also successfully estimated from PL spectra measurements alone, along 

with 2-D maps of the surface dopant density and the depth factor of the laser-doped 

silicon. In addition, the impact of temporal pulse parameters, such as pulse duration 

and temporal pulse shapes, on the doping profiles and recombination properties of 

laser-doped silicon were investigated. By correlating defect-related PL band counts 

with the quantified recombination parameters determined by the luminescence-

coupled numerical device simulations, it was shown that μ-PLS measurements are 

able to perform quantitative measurements of recombination properties. 

The last chapter of this thesis demonstrates an application of an advanced laser 

doping process using a stack of intrinsic amorphous silicon (Si:H(i)) and boron-

doped amorphous silicon (a-Si:B). The results showed that this stack is able to 

provide excellent surface passivation as well as a sufficient amount of dopant source 

for laser doping. 

The method presented in this thesis is a very effective, simple and rapid 

characterization for analysing localized features, in particular spatially 

inhomogeneous laser-processed features on the micron-scale. This method enables 

the observation of the variation in properties within localized features which is not 

possible using conventional methods. It allows for a more in-depth study of laser 

processing and promotes further development of laser technologies for high 

efficiency cell fabrication. 
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Chapter 1. Introduction 

1.1 BACKGROUND 

Since the mid-19
th 

century, fossil fuel has been the major source of energy for 

civilization. In the late-19
th

 century, great progress in electrical engineering made 

electricity an essential tool for modern society. The electrification of energy has 

continued to grow with the world’s annual spending on electricity approached parity 

with spending on oil products in 2016 [1]. About 60 % of worldwide electricity in 

the same year was generated by the combustion of fossil fuels [2]. Although a large 

amount of electricity is still generated from fossil fuels, the contribution of renewable 

energy has grown reaching about 25 % of global electricity production [2]. For the 

last 10 years (2007 ~ 2017), the annual growth rate of renewable energy, excluding 

hydroelectric,
1
 was about 16 % in contrast to fossil fuels which showed only a 2 % 

growth rate [3]. There are many influential and interconnected promoters of 

renewable energy across various fields, including in politics, economics and 

technology, due to the long-term certainty of renewable energy. Fossil fuels will 

eventually be depleted and the current growth rate of our heavily energy-dependent 

society can be only be sustained by utilizing inexhaustible and abundant renewable 

energy. In addition, not only concerns about global climate change, but also energy 

security has caused more attention to be paid to renewable energy. It is well known 

that greenhouse gas emissions cause global warming and that the level of emissions 

must be reduced to mitigate global climate change. One of the more promising and 

effective solutions is the decarbonisation of the electricity supply sector from fossil 

fuel to renewable energy, as electricity generation is the largest single contribution to 

greenhouse gas emission[4]. After the 1973 oil crisis, many countries felt the need to 

reduce dependence on any one source of imported energy while also increasing their 

diversity of energy sources by exploiting renewables [5]. 

Amongst the various renewable energy technologies, photovoltaics (PV), 

which directly converts light into electricity using semiconductor devices, 

experienced the most remarkable growth over recent years. The total global capacity 

                                                 

 
1
 During the same period, hydroelectricity accounted for only 3 % of annual growth.  
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of PV was only about 14.6 GW in 2008, but increased exponentially over the last 

decade, reaching about 386 GW in 2017 [6]. Deployment of PV was initially driven 

by various government policies with significant subsidies because of the 

uncompetitive cost to conventional energy [7]. However, constantly decreasing PV 

module prices have enabled PV to now compete with conventional power sources 

without financial support. The Levelised Cost of Electricity (LCOE) of utility-scale 

PV fell about 73 % between 2010 and 2017, from USD 0.36 /kWh to USD 0.10 

/kWh, within the range of fossil fuel-generated electricity costs  [7]. There was even 

a stunningly low bid of USD 0.0179 /kWh for a 300 MW solar project in Saudi 

Arabia in 2017 [8].  

Although some alternative materials for PV, such as perovskite and cadmium-

telluride, have demonstrated a rapid improvement in conversion efficiency in last 

couple of years [9-12], the current market-dominant technology is a crystalline 

silicon (c-Si) based solar cell/module, accounting for approximately 94 % of the total 

PV production in 2016 [13]. Silicon based solar cell technology is a mature 

technology with over 60 years of development and shows a high conversion 

efficiency, closer to the theoretical efficiency limit than any other PV technologies 

[14]. In addition, PV systems based on c-Si cells have shown high reliability and 

limited efficiency degradation in the field over a long period, therefore they are the 

most preferred PV technology on the market.  

One of main cost reduction drivers for silicon PV is improvements in 

technology, including increases in performance and better manufacturing efficiency 

[7, 15]. In terms of performance increase, the improvement in conversion efficiency 

is obviously critical to reduce the overall cost — a 1 % relative increase in 

conversion efficiency leads to an almost 1 % reduction in average cost [15]. 

Enhancements in cell efficiency could be achieved by improving the entire value 

chain, from material to device fabrication. One of the key requirements is 

employment of high efficiency solar cell concepts, such as passivated emitter and 

rear cell (PERC) and interdigitated back contact (IBC) cell structures.  As the push to 

achieve module efficiencies above 20 % has intensified, manufacturers have begun 

to employ these high efficiency cell structures in mass production [16]. In particular, 

PERC cells are gaining a significant market share over the currently prevailing 

aluminium alloyed back surface field (Al-BSF) cells and will become mainstream 
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after 2020 [17]. The market share of IBC cells is also increasing and is expected to 

rise from 2 % in 2017 to about 10 % in 2028 [17]. In fact, these concepts were 

introduced more than 20 years ago [18, 19], but could not be commercialized until 

2009 due to the high costs associated with their relatively complex fabrication, 

compared to the classic Al-BSF cells. The conventional fabrication sequence for 

these high efficiency cells consists of complex and costly photolithography-based 

patterning, multiple thermal diffusions and chemical processes, making them 

unsuitable for mass production. Therefore, many researchers have studied how to 

reduce the cost and complexity of fabricating these structures. One promising 

approach is the implementation of laser processing to minimize or even entirely 

remove complicated patterning steps. In order to deploy the laser processing 

approach in cell fabrication successfully, there have been many studies of the 

fabrication of PERC and IBC cells utilizing laser processes [20-24]. However, the 

deployment of laser processing in the PV manufacturing industry has not progressed 

satisfactorily due to the lack of adequate characterization methods for the 

optimization of laser processing. 

 

1.2 LOCALIZED FEATURES OF HIGH EFFICIENCY SOLAR CELLS 

A key feature of high efficiency solar cell structures is that they have micron-

scale localized contacts to minimize the proportion of highly recombination-active 

interface between the semiconductor and the metal. The idea of reducing the contact 

area was firstly proposed by Green in 1975 [25], and applied to the formation of a 

front emitter in a passivated emitter solar cell (PESC) structure with a 19.1 % cell 

efficiency record in 1984 [26]. This approach was extended to the rear 

surface/contact, as illustrated by a PERC structure with an 22.8 % efficiency record 

in 1989 [27]. By adding localized dopant diffusion in the rear contact areas, a 24 % 

efficiency cell, named the passivated emitter and rear locally doped (PERL) cell, 

shown in Figure 1-1, was reported in 1990 [18]. More refinement on the PERL cell 

structure [28] eventually lead to another efficiency record of 25.0 % [29]. 
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Figure 1-1 Schematic of the PERL structure. Note heavy n+/p+ doping and restricted contact area 

underneath metal contacts. The figure is taken from Ref. [29].   

  

Another high efficiency cell structure, the IBC cell structure, was first designed 

by Schwartz and Lammert in 1975 [30]. The design consisted of alternating n- and p-

type fingers on the rear surface to reduce internal series resistance and maximise the 

incident photon flux on the front side. In 1986, the more advanced IBC cell design by 

Swanson [19] was proposed which restricted the contact coverage to small points, as 

shown in Figure 1-2. This design already had a conversion efficiency above 20 % in 

the 1980s but was intended for application in concentrator solar cells [30-32]. Soon 

after, this design gained attention for its possible application in one-sun solar cells. 

The IBC design, in conjunction with heterojunction technologies, now surpasses the 

25 % efficiency record of the PERL cell. Indeed, the current world-record efficiency 

of c-Si based solar cells is 26.3 %, based on those two technologies [33]. 

Heterojunction technology enables a higher open circuit voltage (Voc = 0.73 ~ 0.75 V) 

compared with that of the homojunction technology (Voc = 0.64 ~ 0.71 V) due to a 

very thin hydrogenated amorphous silicon (a-Si:H) on the c-Si substrate which 

provides a high-quality passivation and passivated contact structure.  The IBC design, 

meanwhile, maximizes a short circuit current (Jsc = 41 ~ 43 mA/cm
2
) [33]. 

Implementing the IBC design on a homojunction c-Si solar cell is also effective, 

showing an excellent efficiency rate of 25.2 % [34].  
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Figure 1-2 Geometry of point contacts IBC cells. All n+ and p+ heavily doped regions form micron-

scale point contacts with metal. The figure is take from Ref. [19]. 

   

Examining Figure 1-1 and Figure 1-2, we find that both cell structures share 

two key features. Firstly, there are localized heavily n+/p+ doped regions underneath 

metal contacts. Secondly, the direct contact between the silicon and metal is 

restricted through openings of dielectric films which are smaller than the actual size 

of the doped region. Formation of such localized features is suited to laser processing 

since laser beams are typically focused onto small areas for high energy density. 

Thus, laser processing has now been applied to some applications of high efficiency 

silicon solar cells, for example, the ablation of thin-dielectric films for contact 

openings [35-37] and the formation of locally doped regions [38-40]. More advanced 

laser processing, simultaneous ablation and doping from dopant-rich dielectric films, 

known as PassDop technology, has also been proposed by Suwito et al [41]. 

However, although progressive research in laser processing has been conducted in 

laboratories, it has not been actively transferred to the PV industry. For example, the 

shares in laser processing for selective emitter fabrication were only about 5 % in 

2017, and are expected to be about 20 % in 2028 [17].  

The main reason for the slow diffusion of laser processing in the PV industry is 

that the conversion efficiency of laser-processed solar cells is still below that of cells 

made via the traditional method (lithographic mask patterning and thermal diffusion). 
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The advantage of laser processing in minimizing fabrication steps is outweighed by 

the conversion efficiency gap, making it not sufficiently attractive to override the 

traditional method. Although recent improvements in laser processing have reduced 

the efficiency gap [22, 42], these improvements can be accelerated when 

accompanied by the development of accurate and efficient characterization methods 

for localized features. 

 

1.3 THESIS AIM AND SCOPE 

In order to evaluate the quality of localized features and their impact on 

efficiency potential, resistive and recombination power losses; specifically contact 

resistivity and contact recombination properties in locally p+/n+ doped regions are 

typically examined [43, 44].  

 Measurements of recombination properties appear to directly represent the 

quality of the processed region. They normally indicate the level of damage in the 

processed region and thus help to judge the impact of the processing technique.  

Contact resistivity is strongly dependent on dopant density, which is required 

to be very high in order to form ohmic contacts for sufficient current flow with small 

voltage drops across the contact  [45]. Such heavily doped surface layers additionally 

help to prevent minority carriers from reaching recombination active metal contacts. 

As a result, a deep and heavy doping profile inducing a high electric field from the 

dopant gradient is typically applied to repel most minority carriers from the surface 

contact. However, the heavily doped layer is also expected to be a recombination 

active region owing to more Auger recombination. Thus, measurements of doping 

profiles are essential to estimate both contact resistivity and the recombination of 

localized features. 

However, standard characterization tools for measuring those properties lack 

the spatial resolution to directly measure the properties of interest on micron-scale 

localized features. They require relatively large samples, so it is necessary to scale 

localized features to large sizes. This does not necessarily maintain and represent the 

properties of localized features. In particular, large fields formed by typical 

overlapping micron-size laser beams appear to be different compared to localized 

features. The overlapped region where more laser intensity is irradiated therefore has 
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different changes to its surface morphology and properties, compared to a region 

processed with a single and isolated pulse. Since laser processing induces melting 

and recrystallization cycles, it typically results in inhomogeneous surface 

morphology and properties, in particular at the boundary between the melted and 

unmelted regions. Thus, isolated pulse processed features themselves are not likely to 

be homogeneous, even if a homogeneous beam is applied.  

As a result, there is a need to develop a new characterization method which is 

able to directly measure the doping profile and recombination properties of localized 

features without a specific sample structure. For a purpose of investigating impacts 

of laser processing, the new method should have high enough resolution to allow for 

spatial characterization of those two properties in a submicron regime. In this thesis, 

I propose such a novel characterization method using low temperature micro-

photoluminescence spectroscopy (μ-PLS). Temperature-controlled μ-PLS has 

already proven to be a reliable, non-destructive and accurate characterization method. 

Utilizing the advantages of the high spatial and/or spectral resolution of the μ-PLS 

technique, many authors in the recent silicon PV literature have demonstrated 

measurements of various parameters including carrier lifetime [46], dopant density 

[47, 48], dislocations [49], metal impurities [50] and oxygen precipitates [51] with 

micro resolution. However, these other authors’ methods for estimating dopant 

density are quite complex [47] or limited to lateral dopant density mapping [48]. In 

addition, there is no specific method for quantifying recombination properties using 

spectral information.  

This thesis aims to further improve the μ-PLS technique for measurement of 

the doping profile and recombination properties of localized features in a simpler 

way. In addition, the proposed μ-PLS technique in this thesis is applied to locally 

laser-processed features to investigate the impact of laser parameters, which have 

been rarely studied.   

   

1.4 THESIS OUTLINE 

Chapter 2 reviews relevant background knowledge including the properties of 

silicon relating to laser/silicon interaction and the fundamental mechanism of laser 

doping. Specific parameter values, which will be considered in later chapters, are 
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referred to and calculated from the literature. This background is followed by a 

review of conventional and recently proposed characterization methods for localized 

features. By highlighting their limitations, the desired capabilities of a new 

characterization method for localized features are emphasised.  

The methodology, upon which this work is based, is introduced in Chapter 3. 

The principle and applications of low temperature μ-PLS are briefly reviewed. The 

notable characteristics of the PL spectra are described along with how it is utilised in 

later chapters. In addition, the physical meaning and impact of μ-PLS measurement 

conditions, which must be considered in analysing the measured PL spectra, are 

stated in more detail. The laser and μ-PLS systems used in this work are also 

described in this chapter.  

Chapter 4 demonstrates that the μ-PLS measurement is capable of spatial 

characterization with sub-micron precision by applying it to 248 nm laser processed 

silicon samples. This chapter focuses on laser-induced crystallographic damages as a 

function of position within the laser-processed region, in particular at specific 

positions such as at the boundary/edge of processed and unprocessed regions. The 

impact of laser parameters, such as laser pulse fluence and number of repeat pulses, 

on laser-induced damage is analysed by observing the relative level of defect-related 

PL spectra and absolute luminescence intensity. It is also found that the doping-

related PL spectra, owing to the band-gap narrowing (BGN) effect, are related to the 

sub-surface dopant density/doping level. Furthermore, by comparing the defect-

related PL signals observed after laser processing on two different substrate surface 

conditions, we show that wafer preparation can be an important factor impacting on 

the quality of laser-processed silicon. 

In Chapter 5, the relationship between the doping-related luminescence peak 

(hereafter called the ‘doping peak’) and the heavily doped silicon layer is fully 

investigated. This is based on thermally boron-diffused silicon samples having 

various Gaussian function type doping profiles, in terms of surface dopant density 

and doping depth metric (depth factor). This chapter demonstrates that the doping 

profiles of localized features can be estimated from measured PL spectra only. We 

show that the wavelength of the doping peak has a reliable and simple linear 

relationship with the measured surface dopant density on a semi-log plot. 

Consequently, it is possible to establish a calibration curve which can be applied to 
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estimate the surface dopant density. A second calibration curve for estimating the 

depth factor is also established after correcting the measured doping peak PL 

intensity to account for the impact of incomplete dopant ionization at low 

temperatures on the PL intensity. Using these two calibration curves, surface dopant 

densities and depth factors are estimated and used to reconstruct doping profiles. To 

show the effectiveness of this method, the reconstructed profiles are compared to the 

measured doping profiles via ECV profiling. The two-dimensional (2-D) mappings 

of the surface dopant density and depth factor of the micron-scale locally diffused 

features are presented, by performing μ-PLS measurements at 2 μm spatial resolution. 

The technique developed in Chapter 5 is applied to 532 nm laser-doped silicon 

samples to estimate the doping profile of the laser-doped silicon in Chapter 6. Using 

the newly established curves correlating μ-PLS measurements and the ECV curves 

from large-area laser-doped samples it is possible to estimate the surface dopant 

density and depth factor, and hence the doping profile, of laser-doped silicon. The 

impact of temporal pulse parameters, such as pulse duration and temporal profile 

shape, on doping profile and recombination properties of laser-doped silicon are then 

investigated. 2-D mappings of the surface dopant density and the depth factor of 

laser-doped features are also presented, as shown in the previous chapter. This 

chapter expands on the work of Chapter 4 regarding damage-related PL spectra. By 

correlating the defect-related luminescence band with the quantified recombination 

parameter determined by the analytic approach designed by Fell et al [52], the 

potential of the μ-PLS method for quantification of recombination properties is 

presented. 

Chapter 7 demonstrates an application of the advanced laser doping process 

using multi-purpose films capable of providing both excellent surface passivation 

and effective local doping, via laser irradiation. A stack of intrinsic amorphous 

silicon (a-Si:H(i)) and boron-doped amorphous silicon (a-Si:B) is deposited via a 

combination of plasma-enhanced chemical vapour deposition (PECVD) and co-

sputtering of silicon and boron. Irradiation using a 248 nm laser simultaneously 

removes the film and forms the sub-surface doped region beneath the film. Using the 

μ-PLS method, the evidence regarding doping and amorphous silicon layers is once 

again confirmed, and the recombination properties are characterized qualitatively. 
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Finally, Chapter 8 summarises the key findings of this thesis and identifies the 

further work that could improve the μ-PLS method and its applications for laser 

doping characterization.    
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Chapter 2. Review of the current 

characterization methods for doped Si 

2.1 OVERVIEW 

Laser processing methods have already established niche roles for themselves s 

in the PV manufacturing industry, while showing potential for significantly more 

widespread use in the future. 

Two simple laser techniques used in the c-Si solar cell industry are ‘cutting’ 

and ‘edge’ isolation [53]. These techniques use very high intensities, above the 

threshold required to evaporate materials, as non-contact and accurate 

cutting/scribing methods. Laser cutting is used for the resizing of wafers or the 

singulation of cells for concentrator cells in relatively low volumes. Recently, laser 

cutting has been applied in industrial production to cut solar cells in half to reduce 

cell-to-module losses during assembly [54].  

The production of classic Al-BSF cells involves p-type silicon wafers which 

are diffused over the entire surface, including the rear and edge, with n-type 

phosphorous. The wrapping n-type emitter layer acts as a shunt pathway to the rear 

contact and therefore must be isolated: so-called ‘edge isolation.’ Common ways to 

achieve this include wet chemical [55] or plasma etches [56]. Another approach uses 

a laser to scribe a continuous groove around the edge of the wafer. The groove 

extends below the n-type doped shallow layer into the underlying p-type substrate to 

cut the shunt pathways [53]. A different application of the laser groove can be found 

in the laser grooved-buried contact (LGBC) cell structure [57]. Deep and narrow 

grooves are formed into the front emitter surface without exceeding the emitter depth 

and filled with metal to form the front contacts. This feature, a large and buried 

cross-sectional area of metal, has the advantage of lower shading and resistive losses, 

but also induces more recombination due to a large contact area between the silicon 

and metal. To minimize this detrimental effect, heavy diffusion is applied selectively 

in the groove. BP Solar commercialized LGBC cells in 2006 [58], but they are now 

no longer available in mass production. 
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The most advanced laser technique in PV is laser-induced dopant diffusion 

(laser doping). This technique received increased attention after localized heavy 

doping underneath metal contacts became a necessary requirement for high 

efficiency solar cells. With the advantage of micron-scale selective energy control 

and deposition, laser doping facilitates self-aligned heavy doping without subjecting 

the wafer to prolonged high temperature processes and likely corresponding 

degradation. Unlike laser cutting and scribing, which are simple contactless 

destructive processes, laser doping changes the electronic properties of the processed 

region by incorporating dopants into the substrate in the liquid phase by keeping 

intensities below the evaporation threshold. Depending on combinations of various 

laser parameters, such as wavelength, pulse duration, number of repeat pulses and 

beam fluence etc., laser doping can control doping level and depth easily. 

Furthermore, it is also desirable for laser doping to introduce minimum 

recombination centres while meeting the required doping level and depth. However, 

the characterization of locally laser-processed silicon is challenging using 

conventional characterization methods, so it is necessary to develop a novel method, 

one which is specifically suited to localized features.                       

This chapter firstly reviews the optical, thermal and selected electronic 

properties of silicon relevant to this thesis. Since most parameters are temperature 

dependent, the parameter values at processing and measurement temperatures are 

additionally calculated with comparison to the reference values at room temperature. 

This is followed by the description of the interaction between laser and silicon in 

terms of laser doping. At the end of this chapter, conventional characterization 

methods, commonly used in PV research and in this thesis as well, are described with 

emphasis on their limitations when applied to characterization of localized features. 

Recently developed techniques by other researchers are also reviewed.  

  

2.2 SILICON PROPERTIES IN LASER PROCESSING 

The properties of silicon have been studied extensively for decades, so virtually 

all its characteristics have been extensively analysed. In this section, only the 

properties of silicon relevant for laser processing and this work will be reviewed.  



 

Chapter 2 Review of the current characterization methods for doped Si 13 

 

2.2.1 Optical properties 

This work is heavily reliant on laser/silicon interaction, in both sample 

processing and characterization. Therefore, it is important to understand the optical 

properties of silicon. This section reviews silicon’s optical behaviour, not only at 

room temperature, but also above its melting temperature (T > 1690 K) for point 

laser processing and liquid nitrogen temperature (T = 80 K) at which μ-PLS 

measurements are performed. 

When incident light I0 is irradiated on a silicon surface, it is firstly reflected by 

the value of reflectivity RSi at the surface. The transmitted light is then absorbed as 

travelling in silicon, and the intensity of the light at a certain depth z is described as 

equation (2.1): 

 𝐼(𝑧) = (1 − 𝑅𝑆𝑖)𝐼0exp(−𝛼𝑧) (2.1) 

The degree of absorption is determined from the absorption coefficient α. The 

absorption coefficient is not constant but strongly depends on the wavelength λ and 

the extinction coefficient k as defined in equation (2.2).    

 𝛼 = 
4𝜋𝑘

𝜆
 (2.2) 

Figure 2-1 plots the absorption coefficient of silicon in a wavelength range 

between 200 nm and 1400 nm. The figure is reproduced using Green’s tabulated data 

with temperature coefficients [59] to compare α at 300 K and 79 K. The strong 

wavelength dependence of α is readily observable and its dependence on temperature 

is also clearly shown. For photon energies hυ > 3.4 eV (λ = 365 nm), the absorption 

coefficient saturates approximately 10
6
 cm

-1
 regardless of temperature. Above this 

photon wavelength, it decreases with increasing wavelength, and shows a further 

reduction at a lower temperature. By taking the reciprocal of α, the optical 

penetration depth Lα, at which the intensity of light decays to 1/e of its surface value, 

can be calculated.  

Table 2-1 summarizes the calculated/referred values of optical parameters at 

248 and 532 nm, at the wavelength at which laser processing and μ-PLS excitation 

were conducted throughout this study, from Ref. [59-61]. It is notable that the optical 

parameters of silicon are no longer dependent on wavelength when it is melted. 
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The absorbed photons generate electron/hole pairs when the incoming photons 

have energies hυ equal or greater than the band-gap energy Eg of the material. For 

silicon, the photon energy required for optical generation should be at least greater 

than the band-gap energy of silicon Eg = 1.12 eV, corresponding to less than λ = 1107 

nm. Since silicon is an indirect band-gap semiconductor, it additionally needs to 

absorb or emit a phonon in order to adjust different values of crystal momentum for 

the transition between the conduction band and the valence band. This feature was 

observed in the spectrally resolved luminescence measurement (see 3.3). 

 

 

Figure 2-1 The absorption coefficient α of silicon as a function of wavelength at 79 K and 300 K. The 

figure has been reproduced from Ref. [59]. 

Parameters Solid state (79 K) Solid state (300 K) Liquid state 

RSi  (248 nm) 0.71 0.67 0.7 

RSi (532 nm) 0.35 0.37 0.71 

α [cm
-1

] (248 nm) 1.9×10
6
   1.8×10

6 
1.5×10

6 

α [cm
-1

] (532 nm) 2094  7850 
 

1.2×10
6 

Lα [nm] (248 nm) 5.2 5.4 6.6 

Lα [nm] (532 nm) 4.7×10
3 

1.3×10
3 

8.5 

Table 2-1 Optical parameter values of solid state and liquid state silicon, at the wavelengths at which 

the laser processing and μ-PLS measurements were conducted throughout this study.   
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2.2.2 Thermal properties 

Parameters relevant to the thermal behaviour during laser processing are: the 

thermal conductivity κ(T), specific heat c(T), density ρ and thermal diffusivity Dth(T). 

The typical parameter values for solid state and liquid state silicon are listed in Table 

2-2 [62, 63]. The thermal parameters are also not constant and are strongly dependent 

on temperature and phase. The phase transitions of silicon occur at the melting 

temperature Tm = 1687 K and the evaporation temperature Tb = 3538 K. 

 

Parameter 
Solid state (300K) 

[62] 

Liquid state 

[63] 
Comment 

κ(T) [Wcm
-1

K
-1

)] 1.42 0.56 1.42 at 300 K  to 0.287 at 1400 K  

c(T)[Jg
-1

K
-1

] 0.71 0.97 0.67 at 273 K to 0.98 at 1373 K  

ρ[g cm
-3

] 2.33 2.53  

Dth(T)[cm
2
s

-1
] 0.85 0.23 Dth(T) = κ(T)/ρc(T)  

Table 2-2 Thermal parameters of solid state and liquid state silicon. The solid state refers to parameter 

values at 300 K. 

 

Based on the heat equation for simple, one-dimensional (1-D), time-dependent 

conduction, the thermal penetration depth Lth during laser processing can be 

approximated with the pulse duration τp and the thermal diffusivity Dth, as defined in 

equation (2.3).  

 𝐿𝑡ℎ ≈ √𝐷𝑡ℎ(𝑇)𝜏𝑝 (2.3) 

For the nanosecond pulsed laser systems (τp = 1 ~ 1000 ns), the corresponding 

Lth is about 0.3 μm ~ 9.2 μm, and does not exceed 10 μm. 

 

2.2.3 Electronic properties 

The μ-PLS measurement is based on the radiative recombination processes of 

optically generated free charge carriers to characterize the electronic properties of the 

semiconductor. In this section, a brief description of radiative recombination 
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processes, in addition of other recombination processes, is given to help understand 

the μ-PLS measurement. The important characteristics of heavily doped silicon 

which has a considerable impact on the analysis of the PL spectra of heavily doped 

silicon are described.  

Recombination properties 

An excited electron moves from the valence band to the conduction band, 

leaving a hole behind – an electron-hole pair is created. They are then recombined in 

the opposite process; the excited electron at the conduction band falls back into the 

hole in the valence band. The recombination process can be categorized into three 

different recombination mechanisms: (a) radiative band-band, (b) defect level 

assisted, the so-called Shockley-Read-Hall (SRH), and (c) Auger recombination, as 

depicted in Figure 2-2. 

Radiative band-band (BB) recombination is the direct inverse of optical 

generation. The photon emitted by the radiative BB recombination has energy close 

to the band-gap energy Eg of the material. The rate of radiative recombination is 

proportional to the product of the electron and hole concentrations. Considering the 

dopant density NA/D and the excess carrier density ∆n due to the carrier injection in 

silicon, the corresponding radiative BB recombination rate is given as  

 𝑈𝑟𝑎𝑑 = 𝐵(𝑇)(𝑁𝐴 𝐷⁄ +∆𝑛)∆𝑛 (2.4) 

where B(T) is the temperature dependent radiative recombination coefficient of 

silicon. The most recently determined values of B(T) can be found in Ref. [64]. 

Defect level assisted recombination is a two-step recombination process where 

a free electron relaxes to the defect level and then falls to the valence band, to 

complete the recombination with a hole. During the energy transition from the 

conduction to the valence band, the excess energy is released as either multiple 

phonons or photons. Defect levels are associated with the presence of impurities or 

crystallographic defects in the material, and typically lie deep within the inter-band. 

The rate of this recombination is obviously dependant on the carrier density and 

energy level of defects. 

Auger recombination is also a band-band recombination, but involves three 

carriers without the emission of photons. An electron recombining with a hole gives 
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the excess energy to either an electron (‘eeh’ process) or a hole (‘ehh’ process). It 

then settles down to a lower energy state close to the band edge by emitting energy in 

the form of phonons. Traditionally, the Auger recombination rate is expressed as a 

sum of both eeh and ehh recombination, as given in equation (2.5). 

 𝑈𝐴𝑢𝑔 = 𝐶𝑛𝑛
2𝑝 + 𝐶𝑝𝑛𝑝

2 (2.5) 

where Cn and Cp are the respective Auger coefficients. The most cited values of 

the Auger coefficients are Cn = 2.8 × 10
-31

 cm
6
s

-1
 and Cp = 9.9 × 10

-32
 cm

6
s

-1
 [65]. 

Based on traditional Auger theory with Coulomb interactions, Richter et al [66] 

developed a more accurate and generalized model for the quantitative description of 

the Auger recombination rate. Since the Auger recombination process incurs energy 

exchange among multiple carriers, the probability of this process increases with a 

higher concentration of charge carriers. Therefore, Auger recombination becomes a 

dominant process in heavily-doped or highly injected silicon.  

 

  

Figure 2-2 Simplified schematic of recombination processes in an energy band diagram: a) radiative 

BB b) SRH and c) Auger recombination. 

 

Band-gap narrowing 

Heavy doping and/or large carrier concentrations due to optical excitation or 

electrical injection result in a shrinkage of the band-gap in a semiconductor. This 

phenomenon is called band-gap narrowing (BGN). The consequence of BGN is an 
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increase in the equilibrium minority carrier density by orders of magnitude, resulting 

in a strong impact on the operation of the semiconductor device. Therefore, many 

researchers have searched for an accurate parameterization of BGN. There are 

currently three models which are able to quantify the shrinkage of the band-gap ∆Eg. 

The first one is the ‘apparent BGN’ model devised by del Alamo et al. in 1985 [67, 

68]. Unfortunately, this model does not perfectly account for degeneracy effects for 

dopant densities above the effective density of states (Nc = 2.86 × 10
19

 cm
-3

 for 

electrons and Nv = 3.1 × 10
19

 cm
-3

 for holes at 300 K [69]), since Boltzmann statistics 

were used instead of Fermi-Dirac statistics. This model was then improved by Yan 

and Cuevas [70, 71], and considered the degeneracy effect by incorporating Fermi-

Dirac statistics. However, both models were experimentally derived at 300 K as a 

function of the dopant density only, and therefore could not reflect the impact of 

other external conditions, such as excess carrier densities from optical/electrical 

generation and temperature. The last model, derived by Schenk [72], is a theoretical 

model based on quantum mechanics and is able to reflect all conditions. 

Schenk’s model describes the impact of the free carrier densities and the 

dopant densities on the BGN separately, as given by, 

 ∆𝐸𝑐 =∆𝐸𝑐
𝑥𝑐 +∆𝐸𝑐

𝑖 (2.6) 

 ∆𝐸𝑣 =∆𝐸𝑣
𝑥𝑐 +∆𝐸𝑣

𝑖  (2.7) 

where ∆𝐸𝑐
𝑥𝑐 and ∆𝐸𝑣

𝑥𝑐 are the rigid quasi-particle shifts of the conduction and 

valence band edges due to the free carrier densities, and ∆𝐸𝑐
𝑖  and ∆𝐸𝑣

𝑖  are the ionic 

quasi-particle shifts of the band edges due to the dopant densities.  

The rigid quasi-particle shifts are given by 

 ∆𝐸𝑐
𝑥𝑐 =−𝑅𝑦𝑒𝑥∆𝑒

𝑥𝑐 (2.8) 

 ∆𝐸𝑣
𝑥𝑐 =−𝑅𝑦𝑒𝑥∆ℎ

𝑥𝑐 (2.9) 

where 



 

Chapter 2 Review of the current characterization methods for doped Si 19 

 

∆𝑎
𝑥𝑐=−

(4𝜋)3𝑛Σ
2 [(

48𝑛𝑎
𝜋𝑔

𝑎

)

1
3
+ 𝑐𝑎 ln(1 + 𝑑𝑎𝑛𝑝

𝑃𝑎)] + (
8𝜋𝛼𝑎
𝑔
𝑎

) 𝑛𝑎𝜁
2 +√8𝜋𝑛Σ𝜁

5/2

(4𝜋)3𝑛Σ
2 + 𝜁3 + 𝑏𝑎√𝑛Σ𝜁

2 + 40𝑛Σ
3/2

𝜁
 

(2.10) 

The ionic quasi-particle shifts are given by 

 ∆𝐸𝑐
𝑖 =−𝑅𝑦𝑒𝑥∆𝑒

𝑖  (2.11) 

 ∆𝐸𝑣
𝑖 =−𝑅𝑦𝑒𝑥∆ℎ

𝑖  (2.12) 

where 

∆𝑎
𝑖 =−

𝑛𝑖𝑜𝑛𝑖𝑐(1 + 𝑈𝑖)

√𝜁𝑛Σ
2𝜋

[1 + ℎ𝑎 ln(1 +
√𝑛Σ
𝜁

)] + 𝑗
𝑎
𝑈𝑖𝑛𝑝

3/4
(1 + 𝑘𝑎𝑛𝑝

𝑞𝑎)

 
(2.13) 

In equations (2.10) and (2.13), the subscript a represents either the hole h or 

electron e and it should be noted that: 1) 𝑛𝑒 and 𝑛ℎ are dimensionless electron and 

hole densities by 𝑛𝑒 ≡ 𝑛𝑎𝑒𝑥
3  and 𝑛ℎ ≡ 𝑝𝑎𝑒𝑥

3 , 2) pe and ph are constants of Padè 

approximation, not hole densities. The other parameters are given by 𝑛Σ ≡ 𝑛𝑒 + 𝑛ℎ, 

𝑛𝑝 ≡ 𝛼𝑒𝑛𝑒 + 𝛼ℎ𝑛ℎ , ζ ≡ (𝑘𝑇 𝑞⁄ )/𝑅𝑦𝑒𝑥 , 𝑈𝑖 = 𝑛Σ
2 𝜁3⁄ , 𝑛ionic = 𝑁Σ + 𝑎𝑒𝑥

3 , and 

𝑁Σ = 𝑁𝐷 + 𝑁𝐴. Values of constants used in the above equations are listed in Table 

2-3. 

 

𝒈𝒆 𝒈𝒉 𝜶𝒆 𝜶𝒉 𝑹𝒚𝒆𝒙 𝒂𝒆𝒙 

12 4 0.5187 0.4813 16.55meV 37.19×10-8 cm 

𝒃𝒆 𝒃𝒉 𝒄𝒆 𝒄𝒉 𝒅𝒆 𝒅𝒉 𝑷𝒆 𝑷𝒉 

8 1 1.3346 1.2365 0.893 1.153 7/30 7/30 

𝒉𝒆 𝒉𝒉 𝒋𝒆 𝒋𝒉 𝒌𝒆 𝒌𝒉 𝒒𝒆 𝒒𝒉 

3.91 4.20 2.8585 2.9307 0.012 0.19 3/4 1/4 

Table 2-3 Values of constants used in Schenk’s BGN model [72]. 
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Intrinsic band-gap Egi is also temperature dependent and so determined using 

equation (2.14) and Table 2-4 [69]. 

 𝐸𝑔𝑖(𝑇) = 𝐴 + 𝐵𝑇 + 𝐶𝑇2 (2.14) 

T (K) A B C 

0 ~ 190 1.17 1.059 × 10
-5 

-6.05 × 10
-7 

150 ~ 300 1.1785 -9.025 × 10
-5 

-3.05 × 10
-7 

250 ~ 500 1.206 -2.73 × 10
-4 

0 

Table 2-4 Coefficients for equation (2.14) describing intrinsic silicon band-gap Egi (eV) with 

temperature in K [69]. 

 

Using Schenk’s model, the band-gap shrinkage ∆Eg = ∆Ec + ∆Ev and the 

corresponding reduced band-gap Eg = Egi - ∆Eg are calculated according to various 

numbers of excess carriers and temperature, as depicted in Figure 2-3 and Figure 2-4. 

It is obvious that dopant density is the most critical parameter in determining the 

band-gap Eg. The impact of temperature and the excess carrier densities are also not 

negligible, so those should be considered accordingly. Although it is observed that 

the excess carriers have more impact on the band-gap shrinkage ∆Eg than the 

temperature (Figure 2-3 (a) and Figure 2-4 (a)), the resultant band-gap Eg depicted in 

Figure 2-3 (b) and Figure 2-4 (b) shows that the temperature variation induces a 

bigger change of Eg than the number of excess carriers. This is attributed to the large 

change in the intrinsic band-gap Egi with temperature.  

 

 

Figure 2-3 (a) The band-gap shrinkage ∆Eg and (b) the band-gap Eg as a function of dopant density 

and temperature, at the steady-state with the excess carrier ∆n/p = 5 × 10
18

 cm
-3
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Figure 2-4 (a) The band-gap shrinkage ∆Eg and (b) the band-gap Eg as a function of dopant density 

and excess carriers ∆n/p, at T = 79 K 

  

Incomplete dopant ionization 

Another characteristic of heavily doped silicon is incomplete dopant ionization. 

Heavily doped silicon has a Fermi level EF close to the dopant energy state. Free 

carriers then have a higher probability of being captured at the dopant state and some 

dopant atoms remain neutral, so-called incomplete dopant ionization. As a result, the 

net free carrier density is noticeably smaller than the dopant density, even if all 

dopant atoms substitute silicon atoms in the lattice and are ‘electronically active,’ 

providing additional charge carriers. In addition, incomplete ionization is more 

pronounced at lower temperatures because even thermal energy is not high enough to 

activate dopant atoms. Altermatt at al [73, 74] have derived an accurate model for 

incomplete dopant ionization in c-Si in the temperature range from 30 to 300 K. 

The degree of ionization for the acceptor is given by  

 
𝑁𝐴
−

𝑁𝐴
=

1

1 + 𝑔𝐴 𝑝 𝑝1⁄
 (2.15) 

where 

 𝑔𝐴(𝑇, 𝑁𝐴) =
𝑏

𝑔 + (1 − 𝑏)𝑁𝐴 𝑝1⁄
 (2.16) 

with 



 

Chapter 2 Review of the current characterization methods for doped Si 22 

 

 𝑝1 = 𝑁𝑣exp(
−𝐸𝑑𝑜𝑝

𝑘𝑇
) (2.17) 

 𝑏 =
1

1 + (𝑁𝐴 𝑁𝑏)⁄ 𝑑 (2.18) 

The dopant energy level Edop varies with the dopant density and is expressed as 

 𝐸𝑑𝑜𝑝 =
𝐸𝑑𝑜𝑝,0

1 + (𝑁𝑑𝑜𝑝 𝑁𝑟𝑒𝑓)⁄ 𝑐 (2.19) 

The effective density of states in the valence bands Nv depend on temperature 

[69], given as 

 𝑁𝑣 = 2.540933 × 1019(𝑚𝑑𝑣
∗ 𝑚0⁄ )3 2⁄ (𝑇 300⁄ )3 2⁄  (2.20) 

where 𝑚𝑑𝑣
∗  and 𝑚0  are the density-of-states effective masses in the valence 

band and the electron rest mass, respectively, and the ratio of 𝑚𝑑𝑣
∗  and 𝑚0  is 

calculated from Ref. [75].  

Using the above equations with constant values as listed in Table 2-5, the 

amount of incomplete ionization for heavily boron doped p-type silicon is calculated. 

 

𝑬𝒅𝒐𝒑(meV) 𝑵𝒓𝒆𝒇(cm
-3

) c 𝑵𝒃(cm
-3

) d 𝒈 

44.39 1.7×10
18 

1.4 6×10
18 

2.4 1/4 

Table 2-5 Parameters used to calculate the amount of incomplete ionization for heavily boron doped 

p-type silicon. 

   

Figure 2-5 plots the ratio of ionized boron atoms in boron-doped p-type silicon 

as a function of the dopant density and temperature. The dopant density in the range 

between 10
16

 and 10
19

 cm
-3

 is very susceptible to incomplete ionization and it 

becomes more significant as temperature decreases. However, almost complete 

ionization is observed for very heavily doped silicon, where the dopant densities are 

far above the Mott transition (NA > 2 × 10
19

 cm
-3

), regardless of temperature, since 

the dopant state approaches the band edge [73]. 
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Figure 2-5 Ionization ratio as a function of boron density and temperature 

 

In this work, since all μ-PLS measurements were conducted at liquid-nitrogen 

temperature (~ 80 K), at which incomplete dopant ionization is much more enhanced, 

the theory of incomplete ionization is considered in the analysis of the measured PL 

intensity of heavily doped silicon (NA = 10 
18 

~ 10
19

 cm
-3

).  

 

2.3 LASER DOPING FOR SILICON SOLAR CELLS 

In this section, the history of laser doping in c-Si PV application is briefly 

described highlighting the major breakthroughs in laser-doped c-Si solar cell 

efficiency. The fundamental working principle of laser doping is then discussed. 

2.3.1 The development of laser-doped silicon solar cells 

The first laser doping was demonstrated by Fairfield and Schwuttke [76] in 

1968. They made silicon diodes by irradiating a pulsed laser (λ = 694.3 nm) onto a 

polished silicon surface on which phosphorus was applied. The first application of 

this technique in c-Si PV was reported in the early 1980s [77, 78]. The conversion 

efficiency of the early laser-doped cell was about η = 13 ~ 14 %, slightly (1 ~ 2 %) 

lower than that of a cell fabricated via conventional furnace diffusion. Subsequently, 

there was little development in laser doping for PV application until the beginning of 

the 21
st
 century, at which time there was considerable growth in the solar industry 

due to intense research being undertaken to find cost-effective production processes. 
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More recent achievements in laser doping for high efficiency c-Si solar cells are 

summarized in Table 2-6. 

  

Year Cell structure Laser system Eff. (%) Ref 

2009 Full area laser-doped emitter λ= 532 nm, τp = 65 ns 18.9 [79] 

2011 LDSE + Al-BSF λ= 532 nm, τp = 2 μs 19.3 [40] 

2016 PERL λ= 1030 nm, τp = 1.3 μs 23.5 [42] 

2017 IBC λ= 532 nm, τp = 50 ns 23.2 [22] 

Table 2-6 Selection of remarkable achievements in laser-doped c-Si cells 

 

Eisele et al [79] demonstrated the potential of laser doping for high efficiency 

c-Si solar cells, raising the possibility that they may even replace the furnace 

diffusion process. The full area emitter was made by irradiating a 532 nm laser on 

the pure phosphorus precursor layer-deposited p-type float zone (FZ) silicon wafers. 

Because of the non-textured front side, relatively low efficiency η = 18.9 % was 

achieved, however, the high open circuit voltage VOC = 677 mV verified that laser 

doping is comparable to furnace diffusion. The classic Al-BSF cell with the laser-

doped selective emitter (LDSE) showed efficiency η = 19.3 % in 2011 [40]. Notably, 

this result was achieved using commercial grade large-area (156.9 cm
2
) p-type CZ 

silicon wafers with standard production equipment. To date, the record efficiency for 

a laser-doped PERL cell is η = 23.5 % [42]. PassDop technology, a multi-purpose 

film providing both a dopant source for laser doping and good passivation, was 

applied in this cell for the formation of the rear local BSF. The most efficient laser-

doped IBC cell η = 23.2 % was reported by Dahlinger et al [22]. Impressively, all 

emitter and BSFs were made via laser doping only and all lithographic steps for the 

contact formation were replaced by laser ablation. 

2.3.2 Thermal interaction between lasers and silicon 

After the development of high-powered lasers, application of these lasers in 

semiconductor processing was first suggested in the late 1960s. In the 1970s, ion 

implantation became the major method for doping silicon in the industrial 
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manufacture of semiconductors. At the same time, laser annealing was introduced as 

an alternative to high temperature thermal annealing in order to anneal damages 

induced by ionic bombardment in the ion implantation process. This led to increased 

research interest in understanding laser-semiconductor interaction from the late 

1970s to the 1980s. Remarkable publications during this period established 

theoretical models to explain the fundamental phenomenon of the laser process in 

semiconductors, with experimental evidence. Wood and Giles [80] described the 

basic models based on macroscopic diffusion equations for heat and mass transport, 

taking into consideration the temperature and spatial dependencies of various 

parameters. Their model calculations clearly demonstrated the effect of various laser 

parameters (including pulse duration, temporal shape and energy density etc.), in 

terms of the temporal melting depth and temperature profile in silicon. Meyer et al 

[81] provided more general solutions which described the temperature increase of the 

laser-irradiated semiconductors. Their solutions are not restricted to silicon but is 

also applicable to a broad range of semiconductors and excitation conditions [82, 83]. 

The laser-semiconductor interaction is essentially the energy conversion of 

incoming optical energy to thermal energy in the semiconductor. Detailed 

descriptions of the various physical processes involved in this energy conversion 

include: 

 The absorbed optical energy creates electron-hole pairs and provides the 

energy to existing and created charge carriers. 

 The excited carriers emit phonons to be at quasi-equilibrium state 

(thermalization of ‘hot’ carriers). The emitted phonons contribute to the 

lattice heat.  

 The excess carriers diffuse and recombine, and the recombination energy 

is transferred to the lattice. 

 Once the absorbed energy is converted to lattice heat, it is free to diffuse to 

deeper depths via thermal conduction.  

Considering above physical processes of heat delivery, the material heating 

depth LH is given by  
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𝐿𝐻 =
1 − 𝑅(𝑇0)

𝑐(𝑇0)∆𝑇
∫

𝑐

𝛼(1 − 𝑅)

𝑇𝑓

𝑇0

[
𝜒𝑇

𝐿𝑡ℎ𝛼 + 1
+

𝜒𝐵
𝑁𝑅

𝐿𝑡ℎ𝛼 + 𝐿𝐷𝛼 + 1
+
𝜒𝑆
𝑁𝑅

𝐿𝑡ℎ𝛼
]−1𝑑𝑇 (2.21) 

where α = α1+ α2+ αFC is the total optical absorption coefficient, α1  and α2 are 

the one- and two-photon absorption coefficients, αFC is the free-carrier absorption 

and LD is the carrier diffusion length. 𝜒𝑇 , 𝜒𝐵
𝑁𝑅 , and𝜒𝑆

𝑁𝑅  are the fractions of the 

absorbed optical energy which go into the thermalization of ‘hot’ carriers 

immediately after excitation, non-radiative bulk recombination, and non-radiative 

surface recombination respectively.  

For the total optical absorption coefficient, α1 is the intrinsic absorption 

coefficient as described in 2.2.1. The second efficient, α2, is negligible since the 

photon energy of the lasers used in this work (λ = 248 or 532 nm) is much greater 

than the silicon band-gap Eg = 1.12 eV (λ = 1107 nm), and α1 is much stronger than 

α2 [82]. The last coefficient αFC has a significant impact only for infrared light (λ > 

1100 nm) and heavily doped layers [84], so it could be ignored in this study. The 

three terms 𝜒𝑇 , 𝜒𝐵
𝑁𝑅𝜒𝑆

𝑁𝑅 within the bracket are strongly dependent on experimental 

conditions. When the photon energy is well above the silicon band-gap Eg, the first 

term 𝜒𝑇 usually dominates, since most of the laser energy is then immediately 

transferred to the lattice due to the thermalization of ‘hot’ carriers, so the other two 

terms in the bracket could be ignored [81]. Therefore, equation (2.21) could be 

simplified considerably as is shown in equation (2.22). 

 𝐿𝐻 ≈
1

𝛼1
+𝐿𝑡ℎ ≈ 𝐿𝑎 +√𝐷𝑡ℎ(𝑇)𝜏𝑝 (2.22) 

This indicates that the heating depth LH is approximately the addition of the 

optical penetration depth La and the thermal penetration depth Lth. For the excimer 

laser (λ = 248 nm), LH is equivalent to Lth since the corresponding Lα is less than 10 

nm (see Table 2-1). However, LH of the green laser system (λ = 532 nm) should 

consider Lα = 1.3 μm, but only at the solid state. Once the silicon reaches the molten 

phase, the optical penetration depth becomes negligibly small at all wavelengths as 

shown in Table 2-1. Therefore, the heating depth LH of the laser-processed silicon is 

predominantly determined by the thermal penetration depth Lth, hence the pulse 

duration τp. This phenomenon is confirmed in Chapter 6. 
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2.3.3 Laser doping process 

For silicon doping, Group III elements and Group V elements are used for p-

type and n-type extrinsic silicon, respectively. The primary doping method in c-Si 

PV application is solid-state thermal diffusion where the impurity atoms move from 

the surface into the silicon crystal via the substitutional diffusion mechanism at high 

temperatures (900 ~ 1200 ˚C). The rate of diffusion is determined by the diffusion 

coefficient D of the impurity. This coefficient is also not constant but depends on the 

temperature and phase of silicon. Table 2-7 lists diffusion coefficient values of 

typical impurities in solid silicon at melting temperature and in the molten silicon 

[85]. The coefficient value in the solid phase is only in the order of 10
-10

 cm
2
s

-1
, 

therefore furnace diffusion is a slow process, lasting over a scale of minutes to hours. 

However, laser doping is a very fast process, typically taking less than a few 

microseconds for a similar doping depth processed via furnace diffusion, since laser 

doping is basically a liquid phase diffusion process. 

 

Group 
Impurity 

element 
D in solid Si (cm

2
/s) D in liquid Si (cm

2
/s) 

III 

B 1.0 × 10
-10 

2.4 ± 0.7 × 10
-4 

Al 4.0 × 10
-10

 7.4 ± 3.1 × 10
-4

 

Ga 1.4 × 10
-10

 4.8 ± 1.5 × 10
-4

 

In 5.5 × 10
-11

 6.9 ± 1.2 × 10
-4

 

V 

P 1.0 × 10
-10

 5.1 ± 1.7 × 10
-4

 

As 1.0 × 10
-11

 3.3 ± 0.9 × 10
-4

 

Sb 1.3 × 10
-11

 1.5 ± 0.5 × 10
-4

 

Table 2-7 Diffusion coefficients of impurities in solid and molten silicon [85].  

 

Laser doping begins with the formation of silicon melts via laser irradiation. 

Dopant impurities then rapidly diffuse into the molten silicon. The melted region 

exists typically for only a few hundreds of nanoseconds, but it is enough for 

impurities to diffuse deeply due to the much bigger diffusion coefficients in the 
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liquid phase; approximately six orders-of-magnitude larger than those in the solid 

phase [85]. The molten region recrystallises via a liquid-phase epitaxy from the 

underlying unmelted silicon crystal. During recrystallization, diffused impurity 

atoms are integrated into substitutional sites in the lattice [86]. Because of the high 

speed non-equilibrium crystal regrowth, the density of substitutional dopants can 

readily exceed the equilibrium solid solubility limits [87].  

Laser doping can be classified according to the application and structure of the 

dopant precursor, but the fundamental working principle is identical. Initial laser 

doping research was conducted in the late 1970s to early 1980s [77, 88] using a 

gaseous precursor flowing over the substrate. At the same time, there were also 

attempts to use a liquid precursor in laser doping. Initial ‘wet’ laser doping involved 

immersing a substrate in a bath containing a dopant-rich organic solution and 

irradiating its surface through the liquid with a pulsed laser [89]. Another type of 

‘wet’ laser doping involved a laser beam guided within a chemical acid jet, fired at 

high pressure onto the substrate [90]. However, both gaseous and liquid laser doping 

imposed three challenges [91]: 1) slow throughput, 2) dealing with safety issues  

resulting from the remaining gaseous or liquid chemicals on the substrate, 3) 

incremental operating costs due to the complexity of the process. The currently 

favoured technique uses a solid film precursor, classified as a “Laser Induced 

Melting of Pre-Deposited Impurity Doping” (LIMPID) [92]. The dopant-rich solid 

film includes painted-on phosphorus [76], red phosphorus [93], sputtered boron [94], 

silicon nanoparticle ink [44], and a polymer-based phosphorus/boron spin-on dopant 

(SOD) [95]. Other solid precursors which could be readily integrated in c-Si cell 

processing are borosilicate (BSG) and phosphosilicate glasses (PSG), which are 

grown as a part of a furnace diffusion process. In most cases, LIMPID is a ‘two-step’ 

process which consists of the deposition of a solid dopant precursor and the removal 

of the remaining film after dopant incorporation via laser irradiation. However, the 

extra step of peeling off the residual dopant source layer could be removed by 

implementing a multi-purpose film as is used in PassDop technology. This technique 

utilises phosphorous-doped amorphous silicon-carbide films (a-SiCx:P) as both a 

passivating layer and a dopant source layer [41]. Other PassDop-like cases were 

reported using a Al2O3/a-SiCx:H stack [96] and a phosphorus-rich PECVD SiNx layer 

[97]. This current work demonstrates that a stack of intrinsic amorphous silicon (a-
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Si:H(i)) and boron doped amorphous silicon (a-Si:B) is also able to function as a 

multi-purpose film (Chapter 7). In other laser doping experiments in this thesis, a 

proprietary poly-boron precursor from Filmtronics is spun on the substrate and used 

as a solid dopant precursor.  

    

2.4 LIMITATIONS OF THE CURRENT CHARACTERIZATION 

TECHNIQUES 

For the characterization of doped silicon, a number of measurement techniques 

have been developed that show accuracy and reliability. As mentioned in 1.3, 

accurate measurements of the doping profiles and recombination properties of the 

doped silicon layer are critical for estimating the efficiency potential of the solar cell. 

In this section, traditional methods for measuring doping profiles and recombination 

properties in PV research are described with emphasis on their limitations when 

applied to localized features. Recently proposed characterization methods 

specifically developed for localized features are also reviewed. The purpose of this is 

to clarify the requirements for the new characterization method undertaken in this 

thesis. 

2.4.1 Dopant density profiling 

The easiest and simplest characterization method for doped semiconductor 

layers is the sheet resistance Rsh measurement via a four-point probe. The Rsh 

measurement is very convenient to judge the doping level quickly and a direct 

measure of the resistance of thin films that are nominally uniform in thickness. 

However, the practical dopant density across the doped region is typically not 

homogeneous, so it is necessary to measure the variation in dopant density for an 

accurate characterization of the doped region. 

Four-point probe 

A four-point probe (4pp) consists of four collinear probes with equal spacing, 

where a constant current is applied in the outer two probes and the voltage drop is 

measured in the inner two probes, as shown in Figure 2-6. The sheet resistance of a 

rectangular sample can be calculated using equation (2.23), where the correction 

factor C is based on the ratio of sample dimension a to d and on the ratio of the 

dimension d to probe separation s [98].  
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Figure 2-6 Configuration of four-point probes on a rectangular sample. The figure is taken from Ref. 

[98]. 

 

 𝑅𝑠ℎ =
𝑉

𝐼
𝐶 (

𝑎

𝑑
,
𝑑

𝑠
) (2.23) 

 A 4pp is the simplest and most reliable measurement for the sheet resistance 

Rsh of the heavily doped layer. However, it requires a sample size large enough (>  

10 mm) to allow the probes to be placed. In order to use a 4pp on the laser-doped 

region, micron-scale laser beams are typically overlapped to create a relatively large 

doped area. The probe therefore cannot measure the actual Rsh of a locally laser-

doped region. In addition, more detailed information on the doped layer, such as 

dopant density and doping depth, is unable to be measured precisely. A certain Rsh 

value in a doped layer could be a measurement either of a shallower profile with a 

heavier surface dopant density or a deeper profile with a lighter surface dopant 

density.   

Electrochemical capacitance-voltage profiling 

The Electrochemical Capacitance-Voltage profiling (ECV) technique is the 

most common tool used to measure doping profiles in semiconductors. ECV 

profiling basically consists of two steps: one is the measurement of the differential 

capacitance/voltage of a Schottky barrier at the semiconductor sample-electrolyte 

interface to obtain the carrier densities, the other is the electrochemical dissolution 

reaction to etch the material at a controlled rate. These two steps, the repetitive etch 

and measure cycles, are repeated to profile the dopant density as a function of depth. 
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A measured ECV profile could be used to extract the surface dopant density Nsurf and 

the doping depth zj, or it can be aggregated as the sheet resistance Rsh as follows 

 𝑅𝑠ℎ =
1

𝑞 ∫ 𝜇𝑚𝑎𝑗(𝑧)𝑁(𝑧)𝑑𝑧
𝑧𝑗
0

 (2.24) 

where N(z) is a dopant density N at a certain depth z and 𝜇𝑚𝑎𝑗(𝑧)  is the 

corresponding majority carrier mobility, as determined by Klaassen’s model [99, 

100]. 

The semiconductor sample is placed in contact with the electrolyte to form the 

electrochemical cell (see Figure 2-7), designed by Ambridge and co-workers [101, 

102] in the early 1970s. The sample-electrolyte interface works as the Schottky 

barrier without the need for metal Schottky contacts. When the interface is reverse-

biased, a depletion region is created near the sample surface. Based on normal 

semiconductor-metal junction theory, the charge carrier density N at the edge of the 

depletion region of width wd is given by 

 𝑁(𝑤𝑑) =
1

𝑞𝜀0𝜀𝑟𝐴2
×

𝐶3

𝑑𝐶
𝑑𝑉⁄

 (2.25) 

with 

 𝑤𝑑 =
𝜀0𝜀𝑟𝐴

𝐶
 (2.26) 

where 𝜀0 is the permittivity of free space, 𝜀𝑟 is the relative permittivity of the 

semiconductor sample, q is the electronic charge, A is the area of the semiconductor 

sample-electrolyte contact which is simply determined by the size of the mounting 

ring. Using a slowly modulated high frequency voltage, quantities of C and dC/dV at 

the edge of the depletion region are obtained and substituted in equation (2.25) to 

calculate the charge carrier density N. This carrier density is equivalent to the density 

of ionized dopant atoms within the depletion region. Since band bending in the 

depletion region leads to complete ionization of dopant atoms, the ECV technique 

measures all substitutional dopant atoms, so classified as an electrical profiling. 

Another function of the electrolyte is to dissolve the semiconductor sample for depth 

profiling. The etching of the sample depends on the dissolution current across the 
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semiconductor sample-electrolyte interface and the presence of holes. For the p-type 

semiconductor, majority carriers are holes, so dissolution is readily achieved by 

simply forward biasing the junction. However, the n-type semiconductor requires 

illumination to generate additional holes. Optically generated holes are then attracted 

to the surface by reverse biasing the junction and promoting the dissolution reaction 

near the sample surface.  

Although the ECV technique is accurate and practical for determining all 

substitutional dopant atoms as a function of depth, it is destructive and can only be 

applied to relatively large (typically ~ 10 mm
2
) and laterally uniformly doped 

samples. Furthermore, the measurement takes quite long time because of the slow 

etching rate (typically ~ 1 μm/hr). In this work, a Wafer Profiler CVP21 from WEP 

control is used for the ECV measurement. 

 

 

Figure 2-7 Schematic diagram of the electrochemical cell in an ECV profiler. The figure is taken from 

Ref. [101] 

 

Secondary Ion Mass Spectrometry 

Secondary Ion Mass Spectrometry (SIMS) is also frequently used to measure 

doping profiles in silicon. This technique involves chemical profiling which counts 

total dopant concentration without distinguishing between active and inactive dopant 

atoms, so classified as a chemical profiling. The spatial resolution of SIMS is so high, 



 

Chapter 2 Review of the current characterization methods for doped Si 33 

 

typically about 0.1 μm laterally and in the order of 1 nm depth-wise, that it enables 

micron characterization of the sample even in two and three dimensions [103]. As a 

result it has been employed to measure the doping profile of locally laser-doped 

silicon by many researchers [77, 78, 88, 96, 104-107]. In addition, SIMS is capable 

of detecting all elements as well as isotopes and molecular species, so it can be used 

to detect the amount of unwanted impurities, such as oxygen and nitrogen, during the 

laser doping process [104, 108]. Unfortunately, SIMS is time consuming and 

expensive tool, unsuitable for frequent measurements.  

Terahertz Time Domain Spectroscopy      

Jen et al [109] presented a new approach to high-resolution dopant density 

mapping using transmission mode terahertz time domain spectroscopy (THz-TDS). 

THz-TDS is a spectroscopic technique in which the properties of materials are 

probed with very short pulses of terahertz radiation (a sub-picosecond pulse regime). 

Terahertz pulses are typically generated and radiated by an ultrashort pulsed laser on 

a sample using optical techniques. The THz pulses propagated through the sample 

are then measured in a detector that is simultaneously illuminated with the ultrashort 

laser pulse. In Jen’s early work [110], the power ratios — pulses propagated through 

the sample divided by a reference pulse propagated the same distance through air or 

the reference sample — in the frequency domain were presented as a very sensitive 

indicator of dopant density. Since THz radiation absorption increases with a number 

of free carriers, and hence dopant concentration, the resonant peak amplitude of the 

power ratio decreases with dopant concentration as shown in Figure 2-8. 

Based on this phenomenon, they predicted a doping profile by adapting 

repetitive etch-measure cycles like ECV profiling. The difference between this and 

the electrochemical approach used in ECV is that anodic oxidation is incorporated to 

remove the silicon, layer by layer.
2
 The material library — which contains the THz 

radiation absorption and refractive index of doped silicon at several doping 

concentrations spanning the doping range of interest — is required to convert THz 

radiation measurements to dopant density. This method constructs the doping profile 

backwards from the last etched to the non-etched. The data of the last etching is 

analysed first, to determine the background dopant density by comparing it with the 

                                                 

 
2
 Authors mentioned that any other etching techniques can be incorporated. 
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reference wafer. The “(n+1) th” etched sample data is then used as the basis to 

estimate the dopant concentration in the “n th” etched sample. The accuracy of this 

method is greatly dependent on the precision and volume of the material library. 

Since THz-TDS dopant profiling is based on free carrier absorption in doped silicon, 

this technique is an electrical profiling like the ECV technique. Although the results 

of this method have been proven using experimental data comparing the constructed 

doping profile with the SIMS measurement [109], a comparison with ECV 

measurements would be more convincing. 

 

 

Figure 2-8 Power transmission ratios of different levels of boron concentration. The figure is taken 

from Ref. [110]. 

 

Secondary Electron Microscopy Dopant Contrast Image        

Scanning electron microscopy (SEM) is generally used to visually inspect 

micron-structures in nanometre resolution. The most common SEM mode is 

detection of secondary electrons (SE) emitted from atoms excited by an electron 

beam. The detected SE not only reveals specimen topography, but also recognizes p- 

and n-type doped regions qualitatively using image contrast, in which p-doped 

regions appear brighter than n-doped regions [111]. It has  even been found that the 

contrast level in the SE image depends on doping concentration levels [112]. 

Utilizing this phenomenon, known as the Secondary Electron Microscopy Dopant 

Contrast Image (SEMDCI), Xu et al [95] demonstrated 2-D dopant density mapping 
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of locally laser-doped silicon quantitatively, as shown in Figure 2-9. Based on the 

quantitative relationship between dopant density and image contrast from thermally 

diffused samples, SE contrast images of laser-doped silicon were converted to 2-D 

dopant density images. The most significant advantage of this characterization 

method is that dopant distribution over several orders of magnitude could be 

visualized easily in nanometre resolution. Other advantages of this method are its fast 

measurement capability, high spatial sensitivity and simple sample preparation. 

However, the quantification accuracy of this method is not as precise as ECV or 

SIMS; in particular the image contrast near the surface cannot represent actual 

surface dopant density due to the edge effect where electrons preferentially flow in 

and out [113]. Furthermore, the quantitative relationship of the dopant density-

contrast is quite sensitive to substrate background dopant density and the SEM 

settings, which must be carefully controlled. To further ensure accurate 

quantification it is necessary to freshly cut before measuring.  

 

 

Figure 2-9 Two-dimensional boron concentration map of laser-doped samples processed with a Q-

Switched DPSS laser with: (a) pulse energy of 15 μJ and pulse distance of 125 nm; (b) pulse energy of 

17.5 μJ and pulse distance of 500 nm. (c) A thermally boron-diffused sample is given as the reference. 

The figure is taken from Ref. [95]. 

   

Photoluminescence based dopant density mapping 

In silicon PV research, photoluminescence (PL) imaging is a very popular 

characterization method due to its numerous applications in spatially resolved 

characterization. One of the PL imaging applications is imaging of total dopant 
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density. Lim et al [114, 115] proposed two PL-based techniques for imaging dopant 

densities in silicon wafers. The first one determines the absolute boron density in p-

type wafers by monitoring the rate of iron-boron (FeB) pairing after they are 

dissociated by optical or thermal perturbations. A series of PL images measured at 

intervals after the dissociation of FeB pairs are processed and converted to a dopant 

density image. Since this technique is based on FeB pairing and the observation of 

lifetime changes in PL images, sufficient Fe concentration in the wafer and surface 

passivation is necessary. The second technique determines the net doping 

concentration in either n- or p-type wafers by utilizing the linear relationship 

between PL intensity and dopant concentration in low injection. To ensure the linear 

relationship, a high bulk lifetime with an unpassivated surface is required to pin the 

excess carrier density. 

These two PL-based techniques enable fairly simple and rapid dopant mapping 

but they are limited to wafers, and are not suitable for locally laser-processed 

features. The spatial resolution is relatively high but is limited to about a few 

hundred micrometres depending on the pixel size of the detector in the PL imaging 

tool. In addition, since these techniques are developed for the purpose of 

characterizing homogeneously doped wafers, they are not able to do depth profiling.       

 

2.4.2 Recombination properties measurement 

The recombination property of heavily doped regions is typically quantified by 

the recombination parameter J0, which expresses cumulative recombination 

including radiative, Auger, SRH and surface recombination. This parameter 

represents a pre-factor in the calculation of the injection-dependent recombination 

current, so is frequently referred to as a standard measure of the quality of a doped 

region. 

J0 extraction via photoconductance decay measurements 

The most common method for extracting J0 is proposed by Kane and Swanson 

[116]. This method is based on measurements of the effective lifetime τeff of the 

simple p-n junction sample via the contactless photoconductance decay (PCD) 

method. The inverse τeff with the bulk intrinsic lifetime τb correction has the 

following relationship with J0  
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𝜏𝑒𝑓𝑓
−

1

𝜏𝑏
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𝑁𝐴 + ∆𝑛

𝑞𝑊𝑛𝑖
2  (2.27) 

where ni is the intrinsic carrier density and W is the sample thickness. 

Therefore, J0 could be extracted by plotting the corrected inverse τeff as a function of 

injected carrier concentration. This method assumes that J0, τSRH and ni are constant 

over a range of injected carrier concentrations. The accuracy of this method is 

ensured by the use of a high-lifetime and high-resistivity substrate for high injection 

condition in the lightly doped substrate, and uniform carrier concentration throughout 

the sample [117]. The approximation of the uniform carrier concentration 

necessitates additional requirements, for example symmetric surface conditions, a 

relatively low J0 of the doped region and transient generation condition. Andrew et al 

[118] accounted for the depth-wise non-uniform carrier concentration to improve J0 

accuracy by numerically solving the one-dimensional carrier concentration profile. 

This improvement is particularly effective for a moderately doped substrate with a 

higher J0 when measured via the Quasi-Steady State PCD.  Despite various 

theoretical assumptions and sample/measurement specifications, it is a widely 

accepted method to determine the J0 of the heavily doped region. The requirements 

for the PCD measurements in this analysis, however, limit the minimum area of the 

doped region to be more than the size of an inductive coil in a PCD instrument; for 

example, only 4 different doped regions can be placed on a typical lab-scale 4-inch 

wafer. 

Spatially resolved local recombination characterization 

To overcome the spatial resolution limit of the conventional PCD based 

technique, imaging methods have been chosen and developed to characterize local 

recombination properties quantitatively. The most popular imaging methods are light 

beam-induced current (LBIC) mapping [119-121], lock-in thermography (LIT) [122, 

123], and PL imaging [124, 125].  

LBIC is the optical variant of the well-known method of electron beam-

induced current (EBIC) imaging. Instead of an electron beam, a p-n junction sample 

surface is scanned by a focused laser beam and the induced current is measured for 

imaging. The sample requires external contacts to be under short circuit conditions 

hence the resultant raw image is an image of the short circuit current. The spatial 
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resolution is dependent on the excitation beam size, so it is possible to do a sub-

micron scale measurement [121].    

The LIT method uses a thermocamera to image local recombination 

characteristics. Certain local heat sources are periodically applied by various means, 

typically at a modulation frequency of 10 Hz. The measured infrared (IR) images are 

then evaluated to images of the local temperature modulation amplitude and the 

phase. When LIT is performed in the dark (DLIT), the recombination current can be 

quantitatively imaged. The -90˚ phase shifted component of the DLIT image, taken 

under two or three different bias voltages, can be converted to the local 

recombination current density image [122]. The resolution of DLIT is in millimetres, 

typically about 2 mm for a 10 Hz modulation, due to thermal diffusion length. 

PL imaging is the latest, but most popular method in PV research. Basically, 

this technique is a measurement of the radiative recombination of excess carriers 

after homogeneous illumination with appropriate light filtering to eliminate the 

excitation light. PL imaging was initially demonstrated as an alternative method of 

measuring the effective lifetime of the PCD measurement [126]. With appropriate 

additional experimental conditions and theoretical interpretations, local series 

resistance and recombination current images can be obtained from PL images [125].   

Although the above three techniques are able to characterize various properties 

spatially they are typically limited to the wafer or device level. In addition, in order 

to quantify/map the recombination current, the formation of external contacts is 

necessary for all methods.  

Analytic approach to extract J0 using a PL image and simulation 

Fell et al [52] proposed a new approach to quantify the recombination 

properties of locally doped regions, using a PL image and 3-D numerical simulations 

using Quokka [127]. This approach employs 2-D/3-D carrier transport modelling to 

fit the unknown local recombination property to a measured quantity. A sample 

structure requires an unprocessed reference region, which needs to be sufficient in 

size for a PCD measurement. In other regions of the sample, the locally doped 

regions form arrays with specified pitches in the x-and y-directions. The size of the 

array also should be considered, to minimize the smearing effect from adjacent 

processed/unprocessed regions in the PL measurements. 
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The first step in this analysis is the derivation of the recombination property, 

J0,pass or surface recombination velocity Spass, of the reference region and the 

measurement of basic parameters, such as thickness W and bulk resistivity ρ. Using 

PCD measurements, the τeff in the reference region is measured. Iterative simulations 

of the carrier lifetime curve using Quokka’s optimizer function are performed, with 

varying J0,pass, until the optimal fit to the measured carrier lifetime curve is obtained. 

Additionally, the SRH-dominated bulk lifetime could be a variable together with 

J0,pass in the simulation, if the bulk lifetime is not clearly determined (see Figure 7-2).  

In the next step, measured PL signals in the reference region are correlated 

with the simulated PL to derive the calibration factor. PL signals in the reference 

region are taken at various illumination levels; distinct levels of photon flux are 

recorded using a photodiode. The PL imaging tool used in this work is a BT Imaging 

LIS-R1. The excitation source is a homogenized 808 nm laser. A silicon CCD with a 

short-pass filter captures the emitted PL signal with a cut-off wavelength of 1025 nm, 

to reduce the light smear. The optical properties, external reflection Rext at the 

excitation laser wavelength (808 nm), and the internal reflections of the front and 

rear sides Rf & Rr over a range of wavelengths (250 ~ 1600 nm) of the sample, are 

characterized via OPAL 2 [128] or direct measurements. Setting all measured and 

simulated parameters as boundaries in Quokka (e.g. W, ρ, bulk lifetime, J0,pass, Rf, Rr, 

Rext), PL signals over the range of excitation photon flux used to take PL images of 

the reference region are simulated. The calibration factor is then determined from the 

ratio of the measured PL signal to the simulated PL signal at the same excitation 

photon flux.  

 𝐶 = 
𝐼𝑃𝐿,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐼𝑃𝐿,𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
[𝑐𝑜𝑢𝑛𝑡𝑠𝑠−1] (2.28) 

where the IPL,measured is the averaged PL count across a region equivalent to the 

detection area of the inductive coil used to extract the τeff in the reference region. 

The third step establishes simulated PL signals versus the recombination 

parameter J0,d of the locally doped regions curve, to extrapolate J0,d from measured 

PL signals.  In order to simulate PL signals, it is necessary to define a 3-D domain of 

a unit cell replicating the geometrical properties of the locally doped sample structure 
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in Quokka. Figure 2-10 depicts the exemplary 3-D domain of the unit cell used in 

Chapter 6 to analyse recombination of locally laser-doped regions.  

 

Figure 2-10 3-D domain of a unit cell used in local recombination analysis in Chapter 6. Red is a 

circular laser-doped p+ region. Blue is a virtual contact for simulation. Green represents the no-

conductive boundaries. Width and height of a unit cell is a half of actual pitch size. 

 

The previously derived J0,pass value is used for the passivated (green) region. 

The only simulation parameter varied is the recombination parameter J0,d of the 

locally doped (red) region. Simulated PL intensity is then calibrated with the 

calibration factor C which is obtained from the previous step (Equation (2.28)). 

Figure 2-11 shows an example of the simulated PL curve as a function of J0,d with 

different pitches. It is worthwhile noting that the sensitivity of the PL signal is 

affected significantly by the pitch size — the pitch size should be chosen carefully 

for clear distinction of low value J0,d from the PL intensity. For example, in Figure 

2-11, J0,d in a range between 100 and 1000 fA/cm
2
 is only distinguishable with 60 

μm pitch. 
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Figure 2-11 An example of simulated PL intensity for a constant pitch of 60 μm, 120 μm and 180 μm 

as a function of local recombination parameter J0,d. 

 

Finally, the measured uncalibrated PL image of the locally doped sample is 

converted to the J0,d image by extrapolating J0,d values using this curve, as depicted 

in Figure 2-12. We use an averaged value across a processed area to represent local 

recombination J0,d  in this study. 

 

 

Figure 2-12 A calibration curve established by correlating measured τeff and PL counts in the reference 

region (green dot circle) is used to extrapolate the J0,d values of the locally laser-doped sample from 

the uncalibrated measured PL image.  
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This analytic approach is able to examine the recombination properties of 

localized features, since measurements and simulations are conducted directly on 

localized features without scaling up the doped region using overlapping laser pulses. 

Additionally, an extensive range of parameters could be examined in a single PL 

measurement by fitting many small boxes of arrays on a standard lab-scale size 

substrate. However, this method is not a direct measurement/characterization of the 

localized features. Because of the resolution limit of a PL image, area-averaged PL 

counts — in which all PL emissions from the localized features and other regions are 

aggregated — are used and linked to the simulation. The simulation thus estimates 

the overall PL emissions of a unit cell according to the variable J0,d of a locally 

doped region, under the assumption that the other properties are homogeneous across 

all unit cells. The properties of the localized features themselves are also assumed to 

be uniform. As a result, the accuracy of this method is heavily dependent on precise 

measurements of parameters, such as resistivity, thickness, passivated surface 

recombination properties and the optical properties of dielectric film. Small errors or 

uncertainties in the measured parameters would propagate at each step as the analysis 

proceeds. In the same way, homogeneous passivation and bulk substrate are essential 

for accurate characterization.  

  

2.5 SUMMARY AND IMPLICATIONS 

In this chapter background knowledge relevant to this study, including the 

properties of silicon and the working principles of laser/silicon interaction, are 

described. This has been done not only to assist with understanding the theory behind 

laser/silicon interaction, in particular laser doping, but also to reference influential 

factors which must be considered in the application of the low temperature μ-PLS 

measurements used in later chapters. 

This chapter also demonstrates that conventional characterization methods, 

usually employed in PV research for measuring doping profiles and recombination 

properties, are not suitable for localized features due to the lack of spatial resolution. 

It has also been shown that even more recently developed characterization methods 

have some drawbacks. Table 2-8 and Table 2-9 summarize the main features of 
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reviewed characterization methods for evaluating doping profiles and recombination 

properties, respectively, along with their drawbacks.  

For dopant density mapping, information about electrically-active dopant 

concentration is typically more valuable in analyses of the electronic properties of a 

solar cell, such as series resistance and contact properties. For this reason, an 

electrical profiler is preferable to a chemical profiler in PV research. Conventional 

depth profiling always works in a destructive manner, for example etch-measure 

cycles, as shown in ECV, SIMS and THz-TDS. A repetitive working mechanism 

such as this naturally leads to a slow process. It additionally requires a precise depth 

control module/apparatus thus increasing the complexity of the measurement. 

However, when the capability is weighted to rapid 2-D mapping, the depth profiling 

function is diminished, as in PL-based techniques. Although SEMDCI is able to do 

cross-sectional 2-D rapid and high-resolution dopant mapping, its accuracy and 

sensitivity to external conditions make it difficult for it to be an optimum method for 

localized features.      

The quantification of recombination properties is not straightforward, as has 

been shown in all the methods. A specific sample structure, external conditions or 

theoretical boundaries are typically required or considered, and they should be 

determined carefully. In addition, extra sample preparations and the formation of 

external contacts are typically required, as was illustrated in the LBIC, DLIT and PL 

methods. Furthermore, with the exception of μLBIC, their resolution is not high 

enough to observe the variation in recombination properties across the localized 

feature with sub-micron precision. 

Consequently, it is worth developing a characterization method that is capable 

of:  

 Electrical dopant profiling and recombination properties in lateral 2-D and 

depth-wise 1-D 

 Rapid and non-destructive measurement 

 Accurate measurement with high spatial resolution in sub-micron precision 

 Simple measurement without extra sample preparation 
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In this thesis, μ-PLS is proposed as a solution which satisfies all of the above 

requirements. Before going on to verify it experimentally, the basic principles of μ-

PLS and its applications used in this thesis are described in the next chapter. 

 

 Profiling type 
Measurable 

dimension 

Spatial 

resolution 
Main drawbacks 

4pp N/A Planar 2D ~ 10 mm No depth profiling 

ECV 

Electrical 

(Substitutional 

dopants only) 

Depth-wise 

1D 
~ 10 mm

2 

 Low resolution 

 Destructive 

 Slow process 

SIMS 

Chemical 

(Total dopant 

concentration) 

1/2/3D ~ 0.1 μm 

 Destructive 

 Costly 

 Slow process 

THz-

TDS 
Electrical 1/2/3D 

Possibly 

Sub-μm 

regime 

 Destructive 

 Require accurate 

‘material library’ and 

algorithm 

SEMDCI Electrical 
Cross-

section 2D 

Sub-nm 

regime 

 Less accuracy 

 Sensitive to substrate 

doping and SEM 

setting 

PL 

image-

based 

technique 

Electrical Planar 2D 

~ 160 μm 

depending 

pixel size of 

CCD 

 Low resolution 

 No depth profiling 

Table 2-8 Summary of the current dopant profiling techniques 
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Spatial 

resolution 

Contact 

requirement 
Main drawbacks 

PCD 

Depending on 

inductive coil 

size (typically 

cm regime) 

X 
 Low resolution 

 Only for low J0 

LBIC 
Sub-μm 

regime 
O Contact formation 

DLIT 
Sub-mm 

regime 
O Low resolution 

PL 

~ 160 μm 

depending 

pixel size of 

CCD 

O/X 

 Low resolution 

 Require contacts for J0 

quantification 

Analytic 

PL+Simulation 

Depending on 

simulation 

boundary 

condition 

X 

 Precise measurements of 

boundary parameters 

 Assumption/Requirement 

of homogeneous 

boundary parameters 

Table 2-9 Summary of the current measurement techniques for recombination properties  
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Chapter 3. Methodology for μ-PLS 

characterization of localized features  

3.1 OVERVIEW 

In this thesis, μ-PLS is proposed as a solution for characterizing localized 

features. To underpin why μ-PLS is suitable for local characterization, this chapter 

provides detailed information about μ-PLS. After a general description of the 

working principles of μ-PLS, the luminescent responses of silicon under specific 

conditions are described, along with existing applications that have been previously 

detailed in the literature. Details on luminescence and its particular application to this 

work are given. Hardware systems, including the laser processing systems and μ-PLS 

measurement systems used in this thesis, are also introduced.  

 

3.2 WORKING PRINCIPLES OF LOW TEMPERATURE MICRO-PLS 

When a material is illuminated by a laser beam with energy larger than the 

band-gap of the material, electrons in the material are excited to a higher energy level 

— the so-called photo-excitation. The excited electrons finally recombine with holes 

and then release energy as they relax and return back to a lower energy level. When 

the relaxation energy form is the emission of photons (luminescence), this process is 

called photoluminescence (PL). By analysing the emitted PL in a spectrum, 

photoluminescence spectroscopy (PLS), more detailed information about the material 

can be obtained. When photo-excitation is confined to a small area less than 10 μm 

diameter, it is defined as micron-photoluminescence spectroscopy (μ-PLS). Since the 

PLS technique is based on the energy transition between the conduction band and the 

valence band, the measured PL spectrum naturally contains information regarding 

the band structure of the material. Furthermore, PLS measurements at low 

temperatures reveal more detailed information about the band structure, for example 

the degree of BGN [129, 130] due to heavy doping. In addition, sub-band-gap 

emissions from defect or dislocation levels are only observable at lower temperatures, 

since at higher temperatures the carriers trapped at the defect/dislocation levels are 

thermally excited back to the band edges [131, 132]. 
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3.3 PHONON-ASSISTED RADIATIVE RECOMBINATION OF INTRINSIC 

SILICON 

As briefly mentioned in 2.2.1, silicon is an indirect band-gap material, which in 

turn requires additional phonon emissions or absorptions to adjust the crystal 

momentum for the inter-band transition, as shown in Figure 3-1. This is represented 

as multiple luminescent peaks (see Figure 3-2). All spectral peaks represent the 

radiative recombination of free electron-hole pairs with the assistance of momentum-

conserving phonons. Since different phonon modes and energy are associated in each 

peak, peaks are separated by the amount of associated phonon energy. Table 3-1 

summarizes detailed information on all PL peaks of intrinsic silicon, including their 

energy, associated phonon’s mode and energy level, and their relative intensity. All 

notations and values are taken from Ref. [133]. With the exception of the TO and TO 

+ O
Γ 

peaks, all peaks are visible only at low temperatures of less than 50 K, 

otherwise they merge into a single and broad peak as temperature increases (see 

Figure 3-3).    

 

 

Figure 3-1 Band diagram illustration for the photoluminescence process in silicon. The momentum 

conserving phonons are associated in the radiative recombination.  
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Figure 3-2 PL spectra of intrinsic silicon (lightly phosphorus-doped 2 × 10
14

 cm
-3

), measured at 26 K. 

All spectral peaks represent the radiative recombination of e-h pairs with the assistance of the 

indicated phonons. Detailed information on all peaks is listed in Table 3-1. The figure is taken from 

Ref. [133].  

 

Threshold energy Phonon energy 

Assignment 
Relative 

intensity eV nm meV 

1.1545 1073.9 ~ 0 NP ~0.004 

1.1365 1090.9 18.3 TA 0.035 

1.0970 1130.2 57.8 TO 1.00 

1.074 1154.4 80.8 (57.8 + 23) TO + IV
a 

0.016 

1.051 1179.7 103.8 (57.8 + 46) TO + IV
b
 ~0.008 

1.0315 1201.9 122.3 (57.8 + 64.5) TO + O
Γ 

0.07 

1.013 1223.9 142 (57.8 + 64.5 + 21.5) TO + O
Γ
 + IV

a 
~0.0025 

0.968 1280.8 187 (57.8 + 64.5 + 64.5) TO + 2O
Γ
 ~0.01 

Table 3-1 Threshold energy, associated phonon mode/energy and relative intensities of PL peaks in 

Figure 3-2 with notations as defined by Dean et al [133]; TA – transverse acoustical, TO – transverse 

optical, Γ – centre of reduced zone-zero wave vector, IV – phonon selected for intervalley scattering 

of electrons (two phonons, a and b). 
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Figure 3-3 Temperature dependence of intrinsic silicon PL spectra in the temperature range of 78 K ~ 

363 K. Peaks merge into a single broad and low peak as temperature increases. The figure is taken 

from Ref. [134]. 

 

At our μ-PLS measurement temperature (liquid-nitrogen temperature ~ 80 K), 

two main peaks are clearly observable:  one of which is a 1130 nm peak associated 

with the TO phonon only, whereas the other is a 1200 nm peak associated with the 

TO and O
Γ 

phonons as shown in Figure 3-4. Hereafter, a peak near 1130 nm is 

named as a Si BB radiative peak (close to silicon Eg) and a peak near 1200 nm as a Si 

phonon replica. 

 

 

Figure 3-4 PL spectra of intrinsic silicon measured at liquid-nitrogen temperature (~ 80 K) in linear 

(blue) and semi-log (red) scales, using a 532 nm DPSS CW laser with an excitation power of 11 mW 

(~ 130 kW/cm
2
). Except for a laser harmonics peak at around 1064 nm, two peaks related to radiative 

recombination in silicon are observed. 
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3.4 IMPACT OF DOPANT IMPURITIES ON PL SPECTRA 

Dopant impurities in silicon are represented by a shallow dopant energy state 

(near the conduction band for n-type, near the valence band for p-type) in the band-

gap diagram. Figure 3-5 illustrates the band structure of lightly doped and heavily 

doped p-type silicon, showing that the band structure differs significantly according 

to the impurity concentration. For lightly doped p-type silicon, the dopant band is 

close to the valence band, but separated clearly from the valence band (EA in Figure 

3-5 (a)). From the dopant band, the radiative recombination occurs in addition to the 

radiative recombination relating to the intrinsic band-gap. As can be seen in the 

figure, the gap between the conduction band edge and the dopant band is slightly 

smaller than the intrinsic band-gap. As a result, the dopant band bound luminescent 

peak locates at a slightly higher wavelength (~ 1150 nm) than the wavelength of the 

intrinsic band-gap PL peak (Si BB radiative peak ~ 1130 nm in Figure 3-4). Utilizing 

this phenomenon, Tajima [135] developed the first PLS-based technique for 

quantifying boron and phosphorous dopant concentration in silicon. He found that 

the PL intensity ratio of the dopant bound PL peak (either boron or phosphorus) to 

the intrinsic PL peak has a linear relationship with dopant concentration. Colley and 

Lightowlers [136] applied the same technique and reported transferable calibration 

curves for measuring boron, phosphorous and aluminium concentrations after 

correcting the PL spectra for the measurement system response. However, the above 

PL analysis methods were all based on PL signals measured at the liquid helium 

temperature of 4.2 K and limited to light dopant density in a range of 10
12

 cm
-3 

~ 10
15 

cm
-3

. This detection range was extended up to a dopant concentration of 10
17

 cm
-3

 by 

Iwai et al. [137], who used the same technique but increased the measurement 

temperature to 20 K. Recently, Liu et al [138] demonstrated that this technique is 

also valid at relatively high temperatures (liquid-nitrogen temperature ~ 80 K), and 

were even able to measure up to a dopant concentration of about 5 × 10
17

 cm
-3

.  

For more heavily doped (> 10
18

 cm
-3

) silicon however, such a method cannot 

be applied, since the band structure of heavily doped silicon is totally different 

compared to that of lightly doped silicon as seen in Figure 3-5. When the dopant 

concentration increases, in particular to more than the Mott transition (> 2 × 10
18

 cm
-

3
), there are at least four simultaneous phenomena as follows: 
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1. The conduction band and the valence band rigidly shift toward one another 

due to many-body effects [139]. Mutual exchange and Coulomb 

interactions among the increased free carriers cause a downward shift of 

the conduction band. This shift is further enhanced by ionized impurity 

scattering. The valence band is affected in the opposite way, so causing an 

upward shift [140]. 

2. The two band edges have “tailing” into the band-gap due to the effect of a 

random impurity distribution [139]. The actual impurity distribution in 

heavily doped silicon is nearly random. The fluctuation of the local 

potential due to the random distribution of ionized impurities causes a 

spatially dependent distortion of the quantum density of states. However, 

the statistical average of the fluctuating density of states over the entire 

lattice merges into a certain exponential function, the so-called band tail. 

The band tail leads not only to a marginally smaller band-gap but also to a 

wider distribution of free carriers around the two band edges.  

3. The dopant band merges with the band tail to form a more extended band 

tail [141]. In lightly doped silicon, dopant impurities create localized states, 

all of which have the same discrete energy level, owing to sufficient space 

among dopant atoms preventing any quantum-mechanical interaction. 

However, in highly doped silicon, randomly distributed dopant atoms with 

small spacing result in a statistically averaged variation of the dopant 

energy level, forming a dopant band. The width of a dopant band increases 

with the dopant concentration, hence eventually combining with the band 

tail at a dopant concentration above the Mott transition. 

4. The Fermi level moves into the valence band (for p-type silicon), which 

means the semiconductor becomes degenerate [142].         
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Figure 3-5 Schematic illustration of the band structure of (a) lightly-doped and (b) heavily-doped p-

type silicon. Simplified band-band luminescence channels are given for each band structure.  Ec, Ev, 

EA, and EF are the conduction band, the valence band, the acceptor dopant energy level, and the Fermi 

level, respectively.  

 

Nguyen and Macdonald [143] demonstrated the separate impact of the above 

four phenomena on the luminescence spectra of heavily doped p-type silicon. The 

narrowing band-gap definitely incurs a PL spectrum shift toward longer wavelengths 

(lower energies). However, the Fermi energy level has a counter effect on this shift 

toward higher wavelengths. As the Fermi level moves further below the valence band, 

the PL spectrum shifts not only toward shorter wavelengths (higher energies) but 

also broadens because of increased optical band-gap (gap between Ec and EF in 

Figure 3-5) and band filling effects. In addition, the wider carrier distribution over 

the energy level due to perturbed bad edges (band tail + dopant band) leads to 

spectrum broadening. Accounting for all those impacts, the influence of the dopant 

density on the PL spectrum is observed via two simple properties of the spectrum (1) 

the shifting of PL peaks and (2) the broadening of the peaks.  
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Utilizing this phenomenon, Roigè et al [48] demonstrated the dopant density 

quantification of heavily laser-doped micron-structures. Their approach was based on 

PL spectra measured at room temperature. They observed that the broad room 

temperature PL spectrum shifts and widens progressively towards longer 

wavelengths for dopant density above 5 × 10
18

 cm
-3

. By monitoring the intensity-

weighted spectral position of the PL spectrum, they established a calibration curve 

and applied to dopant density quantification of locally laser-doped regions. However, 

it is not explicitly stated whether the measured density is the surface dopant density 

or the depth-wise averaged density. Heinz et al [47] also presented lateral 2-D 

mapping of dopant density, using the μ-PLS system. However, their approach was 

based on the PL intensities which were obtained from two PL measurements with the 

large and small pinhole sizes of a confocal microscope at room temperature, rather 

than analysing spectral positions of the PL spectrum.       

 

3.5 IMPACT OF CRYSTALOGRAPHIC DEFECTS ON PL SPECTRA 

The first observation of dislocation-related photoluminescence in silicon was 

reported by Drozdov et al [144] in 1976. They found that dislocations in silicon give 

rise to four characteristic deep-level PL peaks, the so-called “D-line”; D1 (0.812 eV 

~ 1527 nm), D2 (0.875 eV ~ 1417 nm), D3 (0.934 eV ~ 1327 nm), and D4 (1.000 eV 

~ 1240 nm), as shown in Figure 3-6. Since then, D-lines have been studied 

intensively to reveal their physical origins and characteristics.  

Suezawa et al [131] proposed a model in which two different traps, one with a 

shallow level and the other with a deep level in the band-gap, are related to the 

radiative recombination process of each D-line PL peak (see Figure 3-6). In later 

experimental results, their physical origins were clarified. Sauer et al [132] 

categorized the four D-lines into D1/D2 and D3/D4 groups based on evident 

observation of their consistent spectral response in pairs. They hypothesized that the 

D1/D2 lines originate from secondary defects around dislocations while the D3/D4 

arise from the dislocations themselves. This grouping has been verified by many 

researchers and is now generally accepted. Higgs et al [145], based on highly 

spatially resolved cathodoluminescence spectroscopy, reported that the intensities of 

the D1/D2 lines are higher between slip dislocations, while those of the D3/D4 lines 
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are higher on slip dislocations. Using μ-PLS mapping around the grain boundaries of 

mc-Si, Tajima et al [51] demonstrated that the D1/D2 lines were distributed around 

grain boundaries, whereas the D3/D4 lines were located directly at grain boundaries. 

They additionally found a preferential oxygen precipitation-related PL peak (labelled 

Db), which has an energy level close to the D1 line, on the dislocations [49, 51]. 

Nguyen et al [146] demonstrated that the D1 and D2 lines have different origins. 

They showed that the D1 line was enhanced when the metal impurities at the 

dislocations were cleaned, whereas D2 remained unchanged. They also assumed that 

D3 is not the phonon replica of D4 and that they might have different origins, since 

both lines showed different energy shifts when measured away from grain 

boundaries.    

The spectral shapes of D-lines are critically dependent on the dislocation 

density. Sauer et al [132] demonstrated that D-lines intensities grow clearly as 

dislocation density increases, whereas the band-band luminescent peak (Si BB 

radiative) is effectively quenched.  In addition, the sharp D-lines are merged, forming 

a broad band as the dislocation density increases > 10
9 

cm
-2

. 

The D-lines are also heavily dependent on temperature. As mentioned briefly 

in 3.2, all D-lines are clearly observable at temperatures below 90 K. All D-lines 

become weaker as the temperature is raised. D1/D2 lines and D3/D4 lines merge into 

two bands above 90 K. As the temperature increases above 150 K, the deep-level PL 

is represented as one featureless broad band and its intensity decreases as it 

approaches room temperature [51]. However, the oxygen precipitation related PL 

component Db, which even emits from deep levels close to the D1 level, is still 

observable at room temperature [49, 51]. 
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Figure 3-6 (Left) Dislocation-related D-lines of PL spectra, measured at 4.2 K from plastically 

deformed silicon [144]. (Right) Band structure illustration for the recombination of D1~D4 lines, 

proposed by Suezawa et al [131] 

 

3.6 CHARACTERISTICS OF THE PL SPECTRA OF HEAVILY DOPED 

LAYERS 

Locally heavily doped layers created via thermal diffusion, laser doping, or ion 

implantation are formed at the surface region. The depth of the doped layers for PV 

application is typically less than a few micrometres with inhomogeneous dopant 

density along the depth. Therefore, when the heavily doped layer is excited with an 

excitation laser source which has an absorption depth greater than the doping depth, 

PL is emitted from both the heavily doped layer and the intrinsic silicon substrate. As 

a result, the detected PL spectrum is a superposition of the spectra from the heavily-

doped layer and the intrinsic silicon substrate. Figure 3-7 shows the normalized PL 

spectrum of the heavily doped silicon sample via laser doping and illustrates a 

superposition of the PL components from both layers. The doping peak represents PL 

components from the heavily doped layers. Owing to the BGN as described in 3.4, 

the wavelength of the doping peak is slightly higher (lower energy level) than that of 

the Si BB radiative peak. A phonon replica of the doping peak is also observable at 

around 1225 nm. Since the wavelength of D4 line is also close to that, the 1225 nm 

peak could be a mixture of the D4 line and a phonon replica of the doping peak, if 

the sample contains dislocations.   
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Figure 3-7 Superposition of PL emissions from the heavily doped layer and the intrinsic silicon 

substrate result in two distinctive peaks, the Si BB radiative and doping peaks. The spectrum from an 

undoped silicon sample (Intrinsic Si) is given for comparison. The spectrum was measured from a 

heavily laser-doped silicon sample (LD Si). 

 

In order to analyse the characteristics of the doping peak more clearly and 

easily, the PL component from the underlying silicon substrate is subtracted as 

illustrated in Figure 3-8. In Chapter 5 and Chapter 6, this subtraction of intrinsic 

silicon PL component is used in the analysis. It is quite useful for the PL spectra of 

relatively lightly doped samples which have either a light surface dopant density or a 

shallow doping depth. Since the observation of dislocation in the heavily laser-doped 

samples is one of this work’s interests, and has been demonstrated by many authors 

[147, 148], it is also useful to highlight dislocation-related PL peaks (D3 and D4 

lines) at above 1200 nm wavelength ranges by removing undamaged intrinsic silicon 

PL component. 

In this work, all PL spectra were normalized to a Si BB radiative peak (~ 1130 

nm) unless specifically stated. The first purpose of the normalization was to clearly 

show specific features in the PL spectra relating to doping and defects/dislocations. 

The second purpose was to compare samples processed on different substrates. The 

absolute PL intensity is proportional to the p-n product and is thus heavily dependent 

on the carrier lifetime of the substrate, excitation conditions and the optical 

properties/morphology of the sample surface. Therefore, direct comparison of 

absolute PL intensities is meaningful under limited conditions, whereas 

normalization of PL intensities enables comparison among different substrate 
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conditions under relaxed conditions. Lastly, the relative intensity still has a lot of 

meaning since the excitation volume is fixed. For example, the relative PL intensity 

of the doping peak can be seen as a portion of the heavily doped layer of the total 

excited volume.  

                 

    

Figure 3-8 Decoupling the PL emissions of the heavily laser-doped layer from the PL spectrum shown 

in Figure 3-7 by subtracting the PL component of intrinsic silicon. 

      

3.7 MICRO-PLS SYSTEM CONFIGURATION AND SETUP 

Two μ-PLS systems from the same manufacturer were employed in this work. 

One is the old system, Horiba T64000 and the other is the new system, Horiba 

LabRAM. The old system was employed in Chapter 4 and Chapter 7, and the new 

system was used in Chapter 5 and Chapter 6. Both systems have the same system 

configuration, as depicted in Figure 3-9. The difference is the detection sensitivity 

and precision of the sample stage step for mapping. The new system has much better 

sensitivity and more precise sample stage control. Other system 

specifications/conditions are identical or equivalent for both systems.  

The excitation laser beam was focused onto the sample surface via a 50 × 

objective lens whose numerical aperture is 0.55. The focused excitation-spot 

diameter was approximately 1 ~ 2 μm. The emitted PL was directed into a 

monochromator whose grating was set at 150 grooves/mm, providing a spectral 

resolution of 0.25 nm. It was then detected by a liquid-nitrogen-cooled InGaAs array 

detector for a spectrum range between 800 nm and 1600 nm, or by a silicon detector 
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for a spectrum range between 400 nm and 1000 nm. The sample stage has a 

minimum step size of 0.1 μm in both the X and Y directions enabling fine 2-D 

mapping across the sample surface (only applicable for the new system). A liquid-

nitrogen-cooled Linkham stage was used to control the sample temperature. The 

excitation laser source used in this work was a diode-pumped solid-state (DPSS) 

continuous wave (CW) 532 nm laser with a maximum power of 24 mW measured at 

the stage. The excitation intensity was controlled by inserting the appropriate neutral-

density (ND) filters. The spectral response of the entire system was determined by a 

calibrated halogen-tungsten light source.  

The power range of the excitation laser applied in this work was between 6 

mW and 24 mW. Since the excitation spot size was a few microns in diameter, the 

excitation intensities were from 76 kW/cm
2
 to 320 kW/cm

2
. This range of excitation 

intensities resulted in high carrier densities (> 10
18

 cm
-3

) as demonstrated by Gundel 

et al [46]. Therefore, diffusion of the photo-generated carriers was limited by Auger 

recombination, hence the carrier profile was confined close to the illuminated surface 

area and beam absorption depth. 

 

 

Figure 3-9 Schematic of the μ-PLS system 
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3.8 LASER SYSTEMS AT ANU 

3.8.1 Excimer laser system 

The excimer laser system (λ = 248 nm) used in this work (Chapter 4 and 

Chapter 7) is a Coherent COMpexPro 110F which uses a krypton-fluorine gas 

mixture as the lasing medium. Figure 3-10 depicts the configuration of the laser 

system and the temporal pulse profile at a 25-kV discharge voltage. 

 

 

Figure 3-10 (Left) Schematic of the excimer laser system, and (Right) the temporal pulse profile 

measured at 25 kV discharge.  

 

 A maximum average power and pulse energy is Pavg,max = 30 W, at a 

maximum pulse repetition frequency fp = 100 Hz, and Ep,max = 400 mJ respectively. 

As seen in Figure 3-10, the temporal pulse profile is similar to an asymmetric 

Gaussian function with about 25 ns full-width at half Maximum (FWHM) and 

approximately 40 ns total pulse width. The output pulse energy from the machine is 

set by controlling the discharge voltage from 19 to 30 kV. A variable angle 

attenuator enables further tuning of the pulse energy at the target plane. After passing 

through a non-imaging homogeniser, the beam has good uniformity, less than 5 % 

energy variation across the beam area. The beam is then delivered to a field lens with 

a long focal length to reduce beam divergence. A transmission mask also could be 

installed at this point to define the process features, size and shape. In this case a 

rectangular variable aperture was used, which is micrometre-controlled to produce a 

rectangular feature. Before the sample stage, another objective lens was inserted with 

an iris aperture to remove higher spatial frequencies. The end objective was fixed 
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without a galvanometer scanner, so the beam was directly incident to the stage, hence 

the process direction can be controlled only via the x-y stage transition. At this stage, 

sufficient and stable power readings were only possible with the available power 

meter when using a large area (500 × 500 μm
2
) beam. Smaller features were then 

assumed to have an equivalent energy density, based on the good energy uniformity 

across the large area beam. 

3.8.2 Green laser system 

Figure 3-11 illustrates the configuration and arbitrary waveform generation 

function of the green laser system used in Chapter 6. A Pyroflex 25 fibre laser system 

generates an infrared laser beam (λ = 1064 nm), with a maximum pulse energy of Ep 

= 500 μJ. This system allows users to adjust the pulse duration (0 < τp ≤ 600) and 

height in 1 ns resolution, so that is possible to generate arbitrary pulse shapes on 

demand (see also Figure 6-2). The pulse repetition rate is controlled by the external 

function generator up to 500 kHz. The infrared laser beam is then converted to the 

green laser beam (λ = 532 nm) via the frequency doubling crystal. After splitting the 

beam, the residual infrared beam is dumped, and the green laser beam is delivered to 

a variable angle attenuator for fine pulse energy tuning. A beam expander is inserted 

to match the focal plane of the beam to the sample stage height. A galvanometer 

scanner with an x-y gantry stage enables a more flexible process than the excimer 

laser system. However, the beam is not homogenized, so the spatial beam profile has 

Gaussian distribution with a 4σ diameter of about 16 μm on the target surface.   

    

 

Figure 3-11 (Left) Schematic of the green laser system, and (Right) the demonstration of arbitrary 

waveform generation in 1 ns resolution. 
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3.9 SUMMARY AND IMPLICATIONS 

This chapter provides general information on PLS characterization. PL spectra 

measured at low temperatures is proven to be a reliable method to accurately 

diagnose the band structure of silicon. BGN owing to heavy doping is clearly 

represented by the PL peak shifting toward longer wavelengths and broadening. 

Deep-level PL at the longer wavelength ranges ( > 1200 nm), the so-called “D-lines,” 

are closely related to the formation of defects/dislocation. In the literature, it was 

noted that D1/D2 lines stem from secondary defects or impurities around dislocations, 

whereas D3/D4 lines are an intrinsic feature of dislocations. Based on this 

fundamental principle, with the advantage of having highly resolving optical μ-PLS 

measurements, dopant distribution and recombination active locations across 

localized features are spatially investigated in the following chapters.   
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Chapter 4. Spatial characterization of laser- 

induced doping/damage in Si with 

different surface conditions 

4.1 INTRODUCTION 

It is well known that the laser process induces defects near the sample surface 

[76, 108, 148-152]. The impact of the defect is usually evaluated in terms of 

recombination properties using the conventional characterization methods introduced 

in 2.4.2 [90, 149, 153, 154]. Alternatively, the formation of laser-induced defects can 

be investigated directly using microscopic images, SEM or transmission electron 

microscopy (TEM) [76, 108, 148, 150, 152]. Microscopic visual inspection shows 

the spatial distribution of defects in localized features clearly, but it is not practical to 

use repetitive measurements to explore a wide range of laser parameters due to the 

extra sample preparations needed for imaging specimens. For example, the complex 

and sophisticated preparation steps required to fabricate cross-sectional specimens 

using focused ion beam (FIB) milling makes it difficult for TEM to be used as a 

repetitive characterization tool. In some cases, Yang etching [155] is also employed 

to delineate defects [108, 150].   

This chapter illustrates that these laser-induced defects can be characterized 

spatially by μ-PLS without specific sample preparations. Using the advantage of high 

spatial resolution (down to 1 μm) and the easily repeated measurements of μ-PLS, 

the impact of various laser parameters was investigated by observing the 

defect/dislocation-related PL spectra at specific positions. These include the centre of 

the processed region, the boundary/edge of processed and unprocessed regions, and 

the boundary between two overlapped laser pulses, as shown in Figure 4-1. The 

impact of laser parameters on laser doping was also investigated by observing the 

doping peak (see 3.4 and 3.6).  

This chapter begins with a study of laser damage from the PL spectra of laser-

irradiated samples without the inclusion of dopants. This is then compared with the 

PL spectra of laser-doped samples to observe the level of doping and to determine 

where laser damage is most prevalent within the laser-doped regions. Lastly, we 
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study the effect of sample surface conditions on damage introduced via the laser 

process. 

 

4.2 EXPERIMENTAL DETAILS 

Two sets of samples were prepared: one set with polished surface conditions 

and the other set with relatively rough surface conditions. Polished surfaces were 

achieved via standard chemical-mechanical polish (CMP), prepared by the 

manufacturer. The rougher surfaces were formed by chemical etching in tetramethyl 

ammonium hydroxide (TMAH) solution for 10 minutes, which is typically employed 

to remove saw damage from as-cut wafers. The resultant surface conditions of the 

CMP and TMAH-etched substrates can be compared in the microscopic images in 

Figure 4-1. Apart from the surface condition, other properties of both substrates were 

kept consistent. Both sample substrates were phosphorus doped, n-type FZ silicon 

wafers with resistivity of around 6 Ω∙cm, corresponding to a background doping 

level of around 7×10
14

 cm
-3

. Prior to depositing the dopant precursor, both substrates 

were RCA cleaned to remove any precipitates. B155 Poly boron SOD from 

Filmtronics was then applied using a benchtop spinner at 2000 RPM for 50 seconds. 

The dopant source was subsequently baked at 90 ˚C for 20 minutes to remove 

solvents. A 248 nm KrF excimer laser with a homogeneous 320 × 320 μm
2
 

rectangular shaped beam was used, under nitrogen processing gas flow (to reduce 

oxidation and other particle contamination) at atmospheric pressure and room 

temperature. The laser irradiation melts a shallow layer (typically in the order of 1 

µm or less), thus introducing dopants into the melted layer subsequent to 

recrystallization. A variety of single or multiple repeat pulses, up to 10, were 

employed with various fluences in the range of 1.5 to 4 J/cm2. Consecutive laser 

pulses were spaced by 300 μm to form an overlapped region about 20 μm wide. The 

samples were not passivated to avoid any impact of dielectric films on laser-

processed silicon [108, 156].  

The μ-PLS system employed in this study was a Horiba T64000 with a liquid-

nitrogen-cooling cryostat to maintain the sample temperature at 79 K. The excitation 

source was a CW 532 nm DPSS laser (with an incident spot size down to about 1 μm 

diameter on the sample surface) using a 50× objective lens, and an excitation power 
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kept at approximately 6 mW for all measurements. The emitted PL signal was 

measured by a liquid-nitrogen cooled InGaAs detector. The spectral response of the 

entire system was determined with a calibrated tungsten-halogen lamp. Detailed 

information on the μ-PLS system is given in 3.7. 

 

 

Figure 4-1 Microscopic images of laser-doped regions (4 J/cm2) on (a) CMP and (b) TMAH-etched 

substrates, indicating PLS measurement locations; the centre, the edge and the overlapped regions 

 

4.3 PL SPECTRA OF EXCIMER LASER-DAMAGED SI 

In order to assess the impact of damage induced via the laser doping process, it 

is useful to distinguish the PL signals observable due to damage and those due to 

doping. To achieve this, the defect-related PL signals were first observed from 

silicon substrates that had been processed by the excimer laser without inclusion of 

the dopant precursor but using laser parameters known to be compatible with doping. 

The range of doping inducible fluence is between 1.5 J/cm
2
 and 4 J/cm

2
 with repeat 

pulses of 1 ~ 10 (see Figure 4-4). 

Figure 4-2 shows the normalized PL spectra of the excimer laser-processed 

samples measured at different positions within the laser-processed region. The plots 

also contain the PL spectra measured for the same substrate types, but prior to any 

laser processing; it is worth noting that in this case the observed signal was identical 

for both the CMP and TMAH samples and hence only one spectrum was plotted. 

Compared to the spectra of the unprocessed Si, most spectra of the laser-processed 

samples show specific local PL peaks at around 1230 nm and 1280 nm. These two 

PL peaks are quite small (in this case a log scale is used for the y-axis, while for later 
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plots a linear axis is used to better illustrate features present after laser doping) but 

are distinctive compared to the spectra observed on the unprocessed substrates. 

 

  

Figure 4-2 Normalized PL spectra measured on excimer laser-irradiated samples without a the 

inclusion of dopants at (a) the centre, (b) the edge, and (c) pulse overlapped regions, on both TMAH-

etched and CMP substrates. Excitation is achieved with a 532 nm laser, and substrate temperature is 

79 K. 

 

The locations of these two PL peaks are close to the D4 and D3 lines which are 

emitted from intrinsic dislocations in the crystalline silicon and are particularly 

observable near liquid-nitrogen temperatures [51, 146]. The characteristic 

wavelength reported in the literature for the D4 line is consistent with our observed 

1230 nm peak in Figure 4-2, whereas the characteristic wavelength corresponding to 

the D3 line is slightly lower than the value reported in the literature, which varies 

between 1290 nm and 1305 nm, depending on the relative position around 
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dislocation sites [146]. These luminescence peaks were not observable at all on 

unprocessed silicon; therefore, we can reasonably conclude that the two PL peaks at 

1230 nm and 1280 nm observed in Figure 4-2, are emitted from dislocations caused 

by the laser irradiation. The fact that the other two deep-level lines, D1 and D2 —

which are known to originate from secondary defects and impurities trapped by the 

strain field around dislocations [51] — were not observed. It suggests that either the 

laser irradiation (without the dopant) has created dislocations where such additional 

defects and impurities are not incorporated, or their concentrations are too low to 

emit corresponding PL peaks. Furthermore, the intensities and widths of the 1230 nm 

and 1280 nm peaks are low and narrow, so the density of dislocations is low unless 

employing high fluence. It is observed that the presence of both the 1230 nm and 

1280 nm peaks are dependent upon laser parameters and the measurement location. 

Table 4-1 summarizes the presence of specific 1230 nm (as ● in the table) and 

1280 nm (as ◌ in the table) peaks as well as the presence of a high level of broad PL 

band in the range of 1200 ~ 1500 nm (here referred to as broad-band defects, ◊ in the 

table), observed in the PL spectra of laser-damaged CMP and TMAH samples for a 

variety of typical laser parameters.  
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Flunence 
Pulse 

Centre Edge Overlapped 

CMP 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10 

1.5J/cm
2
   ●+◌ ●+◌ ●+◌ N/A N/A 

2 J/cm
2
  ●/◌ ●+◌ ●+◌ ● ◌ ◌ ◌ ◌ ◌ ●+◌ ●+◌ ●+◌ ●+◌ ●+◌ 

2.5J/cm
2
 ● ● ● ● ● ◌ ●+◌ ●+◌ ●+◌ ●+◌ ●+◌ ● ● ● ● 

3 J/cm
2
 ● ● ● ● ● ◌ ●+◌ ●+◌ ●+◌ ● ●+◌ ● ● ● ◊ 

4 J/cm
2
 ● ● ● ● ● ◌ ● ● ◊ ◊ ● ● ◊ ◊ ◊ 

TMAH  

1.5J/cm
2
   ●+◌ ●+◌ ●+◌ N/A N/A 

2 J/cm
2
 ◌ ●/◌ ●+◌ ●+◌ ● ◌ ◌ ◌ ◌ ◌ ●+◌ ●+◌ ●+◌ ●+◌ ●+◌ 

2.5J/cm
2
 ● ● ● ● ● ◌ ◌ ◌ ●+◌ ● ●+◌ ● ● ● ◊ 

3 J/cm
2
 ● ● ● ● ● ◌ ●+◌ ●+◌ ●+◌ ◊ ● ● ● ● ◊ 

4 J/cm
2
 ● ● ● ● ● ◌ ● ● ◊ ◊ ● ● ◊ ◊ ◊ 

The presence of both peaks in a pair indicated as ●+◌  

●: 1230nm peak ◌: 1280nm peak ◊: Broad-band defects (1200 ~ 1500 nm) 

Table 4-1 A qualitative indication of the presence of the defect-related 1230 nm/1280 nm PL peaks and broad-band defects in PL spectra of CMP and TMAH laser-processed 

(but undoped) samples for a range of laser fluence and pulse repeats, observed at centre, edge and overlapped laser pulse regions.  
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PL spectra corresponding to low fluences (1.5 J/cm
2
) at edges and overlapped 

regions are excluded, since in these cases the laser process itself produced minimal 

or no visible impact on the wafer surface and therefore precise positioning of the 

excitation laser beam at the edge or overlapped regions was not possible. Note that 

the boundary of the processed region is only visible for fluences above 2.0 J/cm
2
. 

However, positioning at the center of the region could more easily be achieved 

because of the relatively large beam size (320 × 320 μm
2
); thus PL spectra 

corresponding to low fluence (1.5 J/cm
2
) at centers are included.  

With increasing fluence and repeat pulses the 1230 nm peak becomes evident, 

whereas the 1280 nm peak disappears. When lower fluence is applied, both the 1230 

nm and 1280 nm peaks are observed, but the 1230 nm peak only is seen as fluence 

increases. Interestingly, PL spectra measured at the edge region, processed with a 

lower fluence or single pulse, show only the 1280 nm peak, unlike other regions 

where both PL peaks are present in a pair. Moreover, the edge and overlapped 

regions show a high level of broad PL band (1200 ~ 1500 nm) when the regions are 

processed with very high fluence (4 J/cm
2
) and multiple pulses (> 3). When 

comparing the presence of those PL peaks on different surface conditions in Table 

4-1, they are not very dependent on the surface conditions, apart from evidence of 

more broad PL band on the TMAH samples under high fluence irradiation. 

 

4.4 PL SPECTRA OF EXCIMER LASER-DOPED SI 

The observations of PL spectra relating to laser processing without the 

introduction of any dopant, as described in the preceding section, provides good 

evidence of the damage induced by the laser-induced melt and recrystallization 

process itself. However, most processes of interest involving a significant melt and 

recrystallization event at the substrate surface are accompanied by the introduction of 

dopants to form heavily doped n-type or p-type silicon. We therefore investigate 

doping and damage resulting from a laser doping process, observed via the PL 

spectra of laser-doped samples. The normalized PL spectra of a variety of laser-

doped samples, as measured at the centre of the laser-doped region, are demonstrated 

in Figure 4-3. The spectrum observed for an unprocessed silicon sample is also 

plotted for comparison.  
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The first observation made was evidence of heavy doping via the local PL peak 

at around 1160 nm. This luminescence emission from heavily doped sub-surface 

layers is due to BGN, while the PL peak, at around 1130 nm, comes from the 

underlying silicon substrate. It is well known that a higher dopant or carrier 

concentration results in a reduction in the band-gap of silicon, resulting in radiative 

recombination at a lower energy (longer wavelength emission). 

 

 

Figure 4-3 Normalized micro-PL spectra measured on excimer laser-doped samples with (a, b) 

1.5J/cm2 or (c, d) 4J/cm2 at the centre regions on (a, c) TMAH-etched and (b, d) CMP substrates. 

Excitation is achieved with a 532nm laser, and substrate temperature is 79K. 

 

For doping profiles which are not homogenous along the depth, for example a 

typical doping profile resulting from a tube diffusion or laser doping process, the 

degree of BGN also varies with depth and hence emission occurs over a range of 

wavelengths. Nonetheless, if the excitation irradiance is absorbed strongly near the 

substrate surface, as is the case for the 532 nm laser light, and if generated carriers 

and hence recombination is confined to the absorption zone, by using high intensity 

irradiance and hence ensuring Auger-limited carrier diffusion, then recombination in 

the most heavily doped region just below the surface dominates, and the emission 

spectra peak becomes a proxy for the surface dopant density. Therefore, we can 

estimate the relative degree of surface dopant density by observing the wavelength at 
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the local PL peak corresponding to the heavily doped layers (here referred to as the 

doping peak). 

Figure 4-4 plots the wavelengths of the doping peaks and sheet resistances as a 

function of the number of repeat pulses for three fluences. The range of applied 

fluences has shown to yield a wide range of doping levels. The spectra were 

measured at the centre of the laser-doped regions on both TMAH-etched and CMP 

samples. Since the doping peak is broad, low and asymmetric, particularly at low 

fluence or very high fluence with multiple pulses, the PL peak wavelength is 

determined by taking the median of wavelengths having PL intensities larger than 

99.5 % of the maximum value within 1140 nm and 1200 nm. By comparing Figure 

4-4 (a, c) and (b, d), it is concluded that the surface condition does not greatly affect 

the resultant level of doping since the figures do not exhibit clear differences. 

Moreover, both samples show similar trends with both fluence and the number of 

repeat pulses. 

 

 

Figure 4-4 The wavelengths of the doping peaks and sheet resistances from laser-doped silicon 

substrates with (a, c) CMP surface and (b, d) TMAH-etched surface finish, as a function of number of 

repeat laser pulses and for a range of laser fluences, observed via µ-PLS measured at the centre of the 

laser-doped regions. 

 



 

Chapter 4 Spatial characterization of laser- induced doping/damage in Si with different surface conditions 72 

 

The total dose and depth of laser-doped samples is determined by the fluence 

and number of repeat pulses [39, 104]. The initial laser pulse melts the silicon sub-

surface layer while simultaneously incorporating dopant atoms from the dopant 

precursor into the melt, and in particular for higher fluences removing or ablating 

some of or the entire dopant precursor films itself, prior to complete recrystallization. 

A higher fluence generally leads to more dopant atoms being introduced, but also to 

a larger melt depth and longer melt period and hence a deeper and flatter distribution 

of dopants within the recrystallised layer. As a result, at higher fluences we observe 

lower sheet resistance, owing both to the higher dose deeper doping, and a lower 

wavelength of the doping peak; the outcome of a lower surface dopant density 

associated with a deeper and flatter doping profile. Subsequent pulses typically 

introduce little or no additional dopant atoms for higher fluences (the dopant 

precursor being completely consumed or removed by the initial pulse e.g. for 2.5 

J/cm
2
 and 4 J/cm

2
 in this experiment) but do introduce some additional dopants for 

lower fluences (1.5 J/cm
2
 in this case).  

The dominant mechanism associated with repeat pulses is the re-melt and re-

distribution of the existing dopant atoms within the melt layer, similar to the effect of 

a traditional thermal ‘drive-in’ step and resulting in a doping profile characterised by 

both lower surface dopant density and greater depth [39, 104]. A deeper and flatter 

profile yields a lower sheet resistance, even for the same total dose, simply because 

carrier mobility increases with decreasing dopant density [157]. Hence it can be 

readily observed that subsequent pulses generally reduce sheet resistance while also 

reducing the wavelength of the doping peak.  

Such a change is generally more evident after the second pulse than after 

subsequent pulses. This is the case first because the dopant precursor being partly or 

wholly removed by the first pulse means that more intense laser irradiation actually 

reaches the silicon surface for the second and subsequent pulses, and secondly 

because the actual diffusion of dopants within the molten-phase necessarily reduces 

with each pulse as the dopant gradient lowers. Additionally, it was observed that for 

higher fluences it appears that many repeat pulses may even result in material 

ablation and removal of doped silicon and hence a resultant increase in sheet 

resistance. 
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As shown earlier, damage and defects caused by laser processing are 

represented in the PL spectra in the wavelength range of 1200 ~ 1500 nm. A similar 

feature has been reported in laser-annealed silicon, which shows a multitude of broad 

bands at around 1360 nm [151], whereas the distinctive D1-D4 lines have been 

observed by other authors [147]. Moreover, a specific PL peak at around 1270 nm, 

showing similar features to dislocation-related PL peaks at a sub-grain boundary of a 

mc-Si, is also observed near the edge of laser-doped regions.  Compared to the PL 

spectra in Figure 4-2, Figure 4-3 shows an elevated PL signal in this range without 

specific dislocation peaks being evident. In fact, dislocation-related PL peaks such as 

the D3 and D4 lines may still be present, but might be masked by the PL signal of 

continuous deep-levels formed by the laser doping process. It is additionally possible 

that the density of intrinsic dislocations (D3 and D4) might actually be suppressed 

due to the dislocation pinning effect of boron dopants in the laser-doped region, as 

reported previously for heavily doped silicon [158, 159]. 

This damage signal rises as higher fluences and a larger number of repeat 

pulses are applied. Moreover, the rise in the defect-related PL signal is observed to 

be greater at the edge of the doping or at overlapped regions, indicating the 

introduction of more severe damage at the silicon recrystallization boundaries (the 

interface between the laser melt region and surrounding region which remains solid 

throughout – noting that for the overlapping pulse regions the silicon has solidified 

and completely cooled between subsequent pulses). This difference in PL spectra 

among all measurement positions is only modest up to moderate fluence (< 3 J/cm
2
) 

but becomes noteworthy at high fluence. 

Figure 4-5 demonstrates the normalized PL spectra at the edge and overlapped 

laser-doped regions at 4 J/cm
2
 for different numbers of repeat pulses and on different 

substrate surfaces. As seen in the figure, the magnitude of the PL signal 

corresponding to laser-induced damage at the edge and overlapped regions is much 

greater than observed for measurements taken at the centre of doped regions in 

Figure 4-3. 
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Figure 4-5 Normalized PL spectra measured on excimer laser-doped samples with (a, b) the edge and 

(c, d) the overlapped regions on (a, c) TMAH-etched and (b, d) CMP substrates. Excitation is 

achieved with a 532nm laser, and substrate temperature is 79K. 

 

Furthermore, the PL peak due to the heavily doped region is not readily 

observable for some measurements, since it is masked by the dominant laser damage 

spectrum; indeed, the intrinsic silicon signal itself is barely recognisable for some of 

these samples, owing to the very high level of laser-induced damage and hence the 

dominance of defect-related recombination. It is difficult therefore to make any 

assessment of surface dopant density at those measurement positions (see 6.6). In 

addition, measurements at the edge/overlapped regions yielded more irregular PL 

spectra than measurements at the centre. Measurement at multiple points along the 

same edge or overlapped regions typically resulted in considerably different spectra 

for many samples, indicating that damage at the micron scale can be quite non-

uniform for these interface regions. This observation is consistent with the visual 

appearance of these edge and overlapped regions at high magnification: they 

generally have a rough and pitted appearance in comparison to the centre of doped 

regions. On the other hand, the centre gives reasonably consistent PL spectra over 

different measurement points. 
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4.5 IMPACT OF SUBSTRATE SURFACE CONDITIONS ON LASER 

DOPING 

The effect of the initial wafer surface conditions on the level of laser doping 

damage can be observed by comparing the PL spectra of Figure 4-3 (c) and (d) or 

Figure 4-5 (a) and (b). At low fluence (1.5 J/cm
2
), measurements at the centre region 

of both surfaces emit similar PL spectra as shown in Figure 4-3 (a) and (b), with 

relatively low defect-related PL signals. However, the two different surfaces yield 

markedly different PL spectra at high fluence processing (4 J/cm
2
), as seen both in 

Figure 4-3 (c) and (d) and in Figure 4-5. This difference is particularly clear for µ-

PLS measurements taken at the edge of the doped region and at overlapped regions, 

with TMAH-etched surfaces resulting for all cases in a larger degree of defect-

related recombination. 

In order to demonstrate the impact of surface conditions more clearly, Figure 

4-6 plots normalized PL spectra of laser-processed (both with and without the 

introduction of dopants) for both TMAH-etched and CMP substrates, measured at 

the centre, at the edge and at the overlapped pulse regions. It appears that less laser 

doping-related damage is induced on the smoother CMP surface, whereas more laser 

doping damage is induced on the rougher surface, although in both cases the damage 

created by the laser process is considerably greater than when processing takes place 

without dopant introduction. Moreover, the damage-related PL signal is amplified at 

the edge and the overlapped regions. Consequently, major electronic quality 

degradation in laser doping processes can be concluded to come from the pulse edge 

and overlapped regions. 

In this study, all PL spectra were normalized to the silicon band-band PL peak, 

to clearly show specific features in the PL spectra relating to laser damage. However, 

the effect of laser damage is also reflected in the absolute measurement of the silicon 

band-band radiative recombination PL intensity, which is correlated to the minority 

carrier lifetime and hence the crystalline quality. Thus, provided that the excitation 

intensity, luminescent escape, and detection fraction is identical in each case, the 

measured band-band intensity of different samples can be directly compared. 
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Figure 4-6 Normalized PL spectra measured on excimer laser-processed (without dopant precursor) 

samples with 4 J/cm
2
 and 3 repeat pulses at (a) the centre, (b) the edge, and (c) pulse overlapped 

regions, and on both TMAH-etched and CMP substrates. Excitation is achieved with a 532nm laser, 

and substrate temperature is 79 K. 

 

Figure 4-7 summarizes the silicon band-band luminescent peak intensity of the 

doped and undoped samples measured at the centre of the processed regions for CMP 

and TMAH-etched surface conditions. It is confirmed that higher fluences and a 

larger number of repeat pulses results in a lower absolute band-band PL emission, 

indicative of the crystalline degradation of the substrate. In addition, while this same 

trend is still observed, in the case of laser-doped substrates the band-band PL 

intensity is also lower. These observations are consistent with preceding observations 

and conclusions regarding, for example, the formation of more dislocations and 
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defects with a higher fluence/more repeat pulses, and the creation of greater broad 

defect-related PL band when dopants are introduced during laser processing. 

It is, however, noted that this trend can only be seen in CMP samples, where 

the smooth surface results in minimal optical difference. The amount of excitation 

irradiance coupled into, and luminescent emission coupled out of the samples (and 

subsequently detected), are expected to be consistent at the smoother surface 

interface. In contrast, as seen in Figure 4-1, TMAH samples show a considerably 

varied surface before and after laser processing. As a result, significantly different 

amounts of light can be coupled into and out of the air and silicon interface when 

measured at different positions, since the irradiated region is small in comparison to 

the surface feature sizes. Therefore, the absolute PL intensity of TMAH-etched 

samples cannot be easily used to indicate crystalline quality. 

 

 

Figure 4-7 Silicon band-band PL peak intensities from (a, b) laser-doped and (c, d) laser-processed 

silicon substrates with CMP surface and TMAH-etched surface finish, as a function of number of 

repeat laser pulses and for a range of laser fluences, observed via µ-PLS measured at the centre of 

laser-doped regions. 
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4.6 CHAPTER SUMMARY 

This chapter demonstrates that μ-PLS is capable of spatial characterization 

within the laser-processed region in micron-scale. High spatial resolution of μ-PLS 

measurement enables investigation of the impact of various laser parameters on the 

formation of dislocations and the doped layer as a function of position within the 

laser-processed region, and in particular at specific positions such as at the 

boundary/edge of processed and unprocessed regions. 

The formation of dislocations in the laser-processed regions is confirmed by 

observing specific D4 and D3 lines in PL spectra measured in laser-irradiated 

samples without the inclusion of dopant atoms. As the laser fluence or number of 

repeat pulses increases, the D-lines increase and eventually form a broad defect-

related PL band between 1200 nm and 1500 nm at very high fluence and repeat 

pulses. In addition, the presence of both D-lines is different according to the position 

of the processed region and applied laser fluence/repeat pulses. However, those 

specific D-lines are no longer observable after the introduction of dopants. The broad 

defect-related PL band, as observed from the high fluence laser-irradiated sample 

without dopants, is shown in the laser-doped sample regardless of laser fluence and 

number of repeat pulses. Moreover, a significantly higher level of defect-related PL 

band is identified at the edge of the processed region and the boundary between 

overlapped pulse regions, highlighting the significant role of the edges of the laser-

doped region on the crystallographic degradation of laser doping. 

The heavily laser-doped layers are characterized from the local PL peak at 

around 1160 nm (doping peak). The position of the doping peak can be attributed to 

BGN corresponding to different levels of sub-surface dopant density, which is 

achieved via laser doping with various combinations of laser fluence and repeat 

pulses.  

In the comparisons of the defect-related PL spectra observed after laser 

processing between the two different substrate surface conditions (TMAH-etched 

and CMP), the lower defect-related PL spectra is observed with the smoother surface 

sample (CMP). This indicates that wafer surface preparation can be an important 

factor impacting on the quality of laser-doped silicon. 
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In the next chapter, the finding that the position of the doping peak is related to 

the surface dopant density/doping level is investigated in more detail. Utilizing this 

phenomenon, a new method for the quantification of dopant density in doped silicon 

layers is developed, based on the measured PL spectra only.  
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Chapter 5. Determination of dopant density 

profiles of thermally boron-diffused Si 

5.1 INTRODUCTION 

The previous chapter discovered that the relationship between the doping peak 

and sub-surface dopant density. Based on this feature, a new method is developed 

which is able to determine not only 1-D depth-wise doping profile, but also map 

dopant densities in lateral 2-D from the measured PL spectra alone. The method 

proposed in this chapter estimates the key defining parameters of doping profiles and 

thus reconstructs them mathematically for thermally boron-diffused silicon samples. 

Micron-resolution of μ-PLS measurements enables to perform 2-D mapping of those 

key parameters of locally boron-diffused features.    

 

5.2 EXPERIMENTAL DETAILS 

5.2.1 Sample preparation  

The samples investigated in this work were produced via a two-step diffusion 

process; a quartz tube-furnace boron deposition step followed by a wet-chemical etch 

to remove the boron rich layer (BRL), and a subsequent high-temperature drive-in 

step. All samples were prepared on 100 Ω·cm high-resistivity n-type (100) 

orientation silicon wafers. Sample preparation is described in further detail by Yan 

and Cuevas in their investigation of BGN in heavily boron-doped silicon [71]. A 

total of 29 different doping profiles were used in this study, with surface dopant 

densities Nsurf ranging from 3.34 × 10
18

 cm
-3

 to 1.56 × 10
20

 cm
-3

, and with a range of 

different diffusion depths between 0.3 μm and 3.5 μm. A small selection of these 

doping profiles is depicted in Figure 5-1, all sample profiles being determined via 

calibrated ECV measurements. 

Localized, heavily doped samples for the purpose of demonstrating dopant 

mapping via μ-PLS were also made using the same two-step diffusion process. 

Features were created via lithographically defined openings (30, 40 and 50 μm 

diameter), through a dielectric diffusion mask consisting of a thermally grown silicon 
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dioxide layer (~ 30 nm SiO2) beneath a LPCVD stoichiometric silicon nitride layer 

(~ 80 nm Si3N4). Three different diffusion recipes were used on the same high-

resistivity n-type silicon wafers – yielding light, moderate and heavy doping. The 

resultant profiles were measured via the ECV technique on additional 1 cm × 1 cm 

dielectric openings on each patterned wafer. All dielectric masks were subsequently 

removed in high concentration HF solution prior to measuring the PL spectra. 

 

 

Figure 5-1 Doping profiles measured by ECV for a selection of thermally boron-diffused samples 

used for μ-PLS analysis, with corresponding measured sheet resistances 

 

The μ-PLS system employed in this study is a Horiba LabRAM system 

equipped with confocal optics. For all measurements, the sample temperature was 

kept at 79 K via a liquid-nitrogen-cooled cryostat. The excitation source was a CW 

532 nm DPSS laser, with an on-sample incident spot diameter of about 1 μm, 

achieved using a 50 × objective confocal lens whose numerical aperture is 0.55. The 

excitation power was kept at approximately 10.5 mW (equivalent to 134 kW/cm
2
) for 

all measurements. The absorption depth of the excitation light at 79 K in silicon is 

around 4.7 μm, as calculated in 2.2.1, while Auger recombination at such high 

injection levels restricts carrier diffusion out of the excitation region and thus 

effectively limits the region of luminescence to a diameter of around 2 μm  [46]. A 

liquid-nitrogen cooled InGaAs array detector captured the emitted PL spectra, with 

spectral resolution of 0.4 nm. The spectral response of the entire system was 

determined with a calibrated tungsten-halogen lamp. In order to compare the PL 
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spectra of different samples, the intensity of the PL spectra was normalized to the 

silicon band-band peak (~1130 nm) from the underlying lightly doped substrate. All 

samples measured in this work have reasonably planar surfaces formed via saw-

damage etching in 25% TMAH solution, without any passivation films present. 

Since the measured PL spectra contain the silicon substrate band-band peak as 

well as the doping peak of interest, subsequent to each measurement the PL spectra 

measured from undiffused control silicon was subtracted to more easily resolve the 

luminescence peak from the heavily doped layers (see 3.6). This is illustrated in 

Figure 5-2 (b). For the locally diffused samples, a 2-D scan mapping with 2 μm 

spatial resolution was conducted, and the full PL spectra measured and analysed at 

each point to characterize the locally doped regions in terms of Nsurf and doping 

depth across the entire feature. 

5.2.2 Key parameters defining the doping profile 

For each doping profile three key profile characteristics were subsequently 

defined – the peak dopant density Np, the peak dopant density position zp, and the 

depth factor zf. Since the dopant density for some samples varies considerably in the 

region immediately below the surface, the surface dopant density Nsurf  was also 

defined by averaging the dopant densities within 50 nm from the surface. The depth 

factor zf was defined as employed in the PC1D simulator [160] by fitting a 

complementary error function (ERFC) or a Gaussian function to these profiles. This 

was possible since the two-step diffusion process results in a doping profile that can 

be approximated either by ERFC or Gaussian function, depending upon the process 

temperature and time of each step, and whether the process can thus be characterized 

as either a finite or infinite source diffusion [161]. The two functions described by 

equations (5.1) and (5.2) respectively, for a dopant density N at depth z, can each be 

defined by a peak concentration Np, the depth at which that peak concentration 

occurs zp, and a depth factor zf. 

 𝑁(𝑧) = 𝑁𝑝 {1 − 𝑒𝑟𝑓 [
|𝑧 − 𝑧𝑝|

𝑧𝑓
]} :ERFC (5.1) 

 𝑁(𝑧) = 𝑁𝑝 𝑒𝑥𝑝 [
−(𝑧 − 𝑧𝑝)

2

𝑧𝑓
2 ] : Gaussianfunction (5.2) 
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5.3 ESTIMATING KEY PARAMETERS OF DOPING PROFILES 

5.3.1 Relationship between Nsurf and doping peak wavelength 

Measured PL spectra, subtracted PL spectra showing only components from 

the heavily doped layers, and the corresponding doping profiles measured via ECV, 

of a selection of samples are depicted in Figure 5-2 (a), (b) and (c), respectively. 

Figure 5-2 (a) clearly shows two distinct PL peaks, at around 1130 nm and 1160 nm, 

corresponding to the radiative recombination of the underlying silicon substrate (Si 

BB) and the recombination in the heavily doped silicon layer (doping peak), 

respectively. The spectrum measured from an undiffused sample is also included for 

comparison. This spectrum is consistent for any undiffused silicon sample and 

additionally represents the emission spectrum from the excited substrate region 

immediately below the diffused layer in our samples. 

Since the doping profiles are not homogenous with depth, the detected PL 

signal is a weighted sum over the individual spectra emitted from the varying doping 

concentrations, resulting in a broadening of the peak. Due to the fact that the 

excitation irradiance is absorbed most strongly near the sample surface, and the high 

intensity incident irradiation ensures an Auger-dominated carrier lifetime in the 

underlying substrate, the generation and recombination of carriers is confined near 

the front surface. Furthermore, emissions from nearer the front surface have a higher 

probability of falling within the detection angle of the detector. As a result, PL from 

recombination just below the surface, in the region of the heaviest doping, dominates 

over PL from further below the surface. Therefore, the wavelength of the doping 

peak can be regarded as a proxy for the surface dopant density. To more clearly 

resolve the doping peak, particularly useful for light and/or shallow doped layers 

such as sample 6, the normalized PL spectra of an undiffused silicon is subtracted 

and identify the wavelength of the doping peak.  
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Figure 5-2 (a) Normalized PL spectra of a selection of boron-diffused samples with different doping 

profiles, measured with a 532 nm laser at 79 K. (b) Modified PL spectra obtained by subtracting the 

PL spectra of undiffused Si (c) The corresponding doping profiles with sheet resistances. (d) 

Measured wavelengths of the doping peaks as a function of Nsurf for all samples, along with Nguyen 

and Macdonald’s results [143] measured from homogeneously heavily boron-doped silicon. 

 

The hypothesis that the wavelength of the doping peak is a proxy for the 

surface dopant density is verified in Figure 5-2 (d). For all samples, the wavelength 

corresponding to the doping peak was plotted as a function of Nsurf. Error bars 

indicate the range of wavelengths having PL intensities larger than 99.5 % of the 

maximum doping peak PL intensity, and thus represent the uncertainty in 

determining the exact location of the doping peak. Nguyen and Macdonald’s results 

[143], measured under similar conditions on homogeneously heavily boron-doped 

silicon wafers, also support our conclusion by showing close agreement with our 

measured values. Our data clearly reveals that the wavelength of the doping peak 

increases with increasing Nsurf, displaying a consistent linear relationship on a semi-

log plot over the range of interest. Thus, it was able to establish a simple ‘calibration 

curve’ for estimating Nsurf from the wavelength of the doping peak. The relationship, 

which can subsequently be applied to any boron-diffused surfaces if PLS 

measurements are taken under similar conditions, is also shown in Figure 5-2 (d), 

and is described by equation (5.3). 
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 𝜆𝑑𝑜𝑝𝑖𝑛𝑔𝑝𝑒𝑎𝑘 = (4.78 ± 0.25)ln(𝑁𝑠𝑢𝑟𝑓) + (945.4 ± 10.9) (5.3) 

 

It was observed that the amount of peak shifting towards a longer wavelength 

does not match what might be anticipated from the simple application of theoretical 

BGN models, thus serving to highlight the complexity of the PL spectra modification 

which occurs with heavy doping. Based on Schenk’s BGN model [72], when the 

dopant density increases from ~ 3 × 10
18

 cm
-3

 to  ~ 1 × 10
20

 cm
-3

, a theoretical band-

gap shrinkage of around 60 meV occurs, whereas the peak shifting observed results 

in an apparent narrowing of only about 20 meV (∆λ ~ 20 nm). Much less peak 

shifting was observed than is predicted by the BGN model, due to the counter 

influence of the degenerate effect which occurs in silicon at very high doping, as 

discussed in 3.4. Increasing the dopant density obviously causes more BGN, 

resulting in the peak shifting towards a longer wavelength. However, in degenerate 

silicon, the Fermi level EF moves into the valence band (for p-type), not only shifting 

the spectra to a shorter wavelength (higher energy), but also broadening all PL 

spectrum. This broadening effect of degenerate silicon is also observable in Figure 

5-2 (b), where the width of the doping peak is observed to increase with Nsurf. 

Therefore, since most of the samples investigated in this work experience the 

competing influences of BGN and the degenerate effects, a separate study would be 

required to apply a theoretical fit to this data. This work will consequently rely upon 

the empirical relationship established here for the further analysis of doped features. 

 

5.3.2 Relationship between zf and doping peak intensity 

The previous section has established that the position of the doping peak 

corresponds directly to the surface dopant density, yet it was also observed in Figure 

5-2 (b) that for samples the relative intensity of the doping peak varies considerably 

with the profile depth. The doping peak corresponds to emissions from the heavily 

doped sub-surface region while the silicon band-band PL peak corresponds to 

emissions from the underlying substrate. The ratio of these intensities therefore 

reflects how much emission originates from the heavily doped layer compared to the 

underlying substrate. Since the depth of the excitation region is largely fixed 

according to the absorption depth of the excitation wavelength, this ratio could 
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therefore represent a measure of the depth of the heavily doped layer. Furthermore, 

the doped layer has a smooth transition between high and low doping, rather than a 

step change, and so rather than defining a simple doped layer depth we instead apply 

a commonly used depth metric, the depth factor zf, for doped layers. 

In order to find values of zf and determine which function gives better fit to the 

measured ECV curves, all measured doping profiles of the investigated samples were 

iteratively fitted to both equations (5.1) and (5.2) to find zf, which gives the minimum 

residuals between the measured data and the modelled functions. Using the optimal 

values of zf for each function, the coefficient of determination R
2
 of both two 

functions was calculated for all samples in Figure 5-3.  

     

 

Figure 5-3 The coefficient of determination R
2 

of two modelled functions (Gaussian and ERFC) for 

thermally boron-diffused samples. An R
2
 of 1 indicates that the modelled functions perfectly fit the 

measured points. 

 

As can be seen in the figure, most samples show a better fit to the Gaussian 

function than the ERFC, therefore zf was fitted from the Gaussian function for all 

samples and an attempt was made to correlate this value with the normalized PL 

intensity of the doping peak. The Gaussian fit was consistent with expectations, 

given that the boron source glass was removed prior to the final thermal drive-in 

process in each case, meaning the dopant source was finite. A consistent fit between 

the doping peak PL intensity and depth factor means that we can use the PL spectral 

analysis to not only estimate the diffusion depth, but also reconstruct the doping 
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profile based on the relationship already established for the surface dopant density, 

assuming the profile follows a Gaussian shape.  It was also observed that the 

reconstructed profile cannot include the term zp, which is required for a profile with 

maximum dopant concentration occurring at a position considerably below the 

surface, as there is currently no reliable means of extracting the zp component from 

the PL spectra analysis. 

Figure 5-4 (a) plots the normalized PL intensity of the doping peak versus the 

depth factor for all samples. Generally speaking, the doping peak PL intensity 

increases monotonically with the diffused layer depth, as anticipated from theoretical 

considerations. However, it is evident from this data set that there is quite a wide 

spread in the depth factor at similar levels of doping peak PL intensity. In addition, 

lightly doped samples (Nsurf < 1 × 10
19

 cm
-3

) show a much larger discrepancy 

compared to the other samples. For example, in Figure 5-2, sample 6 shows a 

relatively deep profile compared to the other samples, whilst having the lowest 

doping peak PL intensity. 

As discussed in 2.2.3, incomplete dopant ionization is significant for lightly 

doped samples (Nsurf < 1 × 10
19

 cm
-3

), and it is also more pronounced at the lower 

temperatures at which our PLS measurements occur. The absolute PL intensity for 

the heavily diffused layer is related to the ionized dopant density, since the PL 

intensity is proportional to the p-n product or in our case ~ (NA + ∆n) × ∆n, where NA 

is the ionized dopant density and ∆n is the excess carrier density [162]. As the PL 

spectra of diffused layers are primarily influenced by Nsurf, any sample where 

significant incomplete ionization occurs under PLS measurement conditions will 

exhibit an overall reduced PL intensity at those wavelengths corresponding to the 

doping-induced BGN, compared to that which might be anticipated by consideration 

of the measured Nsurf alone, at room temperature. The reduction in PL intensity will 

approximately correspond to the fraction of non-ionization which occurs near the 

surface during the PLS measurement conditions. This interpretation is supported by 

comparing samples 1, 4 and 6 in Figure 5-2. Although all samples have a similar 

profile depth, sample 6 shows a much lower doping peak PL intensity than the other 

two samples, since according to our calculations in 2.2.3, sample 6 has only about 46% 

of the dopants activated near the surface at 79 K.. Therefore, it is necessary to 
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consider the effect of incomplete ionization, calculated for each measured Nsurf, on 

the PL intensity when correlating the depth factor to the PL intensity. 

 

 

Figure 5-4 Normalized PL intensity of the doping peak as a function of depth factor, (a) without any 

correction, and (b) including a correction for the effect of incomplete ionization on PL intensity. 

Representative samples shown in Figure 5-2 are also labelled accordingly. 

 

Figure 5-4 (b) again plots the normalized PL intensity of doping peak against 

depth factor, but with a simple division of the raw PL intensity by the fraction of 

ionization for each sample. The result shows an improved linear relationship between 

the doping peak PL intensity and the depth factor across all sample types, compared 

to Figure 5-4 (a). In particular, the measurements for the lightly doped samples now 

follow the main linear trend more closely. However, there is still quite a wide spread, 

most likely due to uncertainty associated with variable excess carrier density ∆n 

among samples, leading to an unpredictable p-n product, and also due to non-

ionisation fractions which are not fixed for any given sample but rather vary with 
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depth. Meanwhile, an accurate estimation of the value of ∆n is very difficult since it 

not only depends on the generation profile (excitation intensity), but also on the 

electronic properties of the substrate, diffused layer and surface. Particularly, the 

unpassivated surface conditions incur a significant change in ∆n near the surface, so 

that shallower profiles are more heavily influenced by surface conditions. As a result, 

individual samples would have a different value of ∆n even under the same 

excitation conditions, which in turn influences the relative PL intensity of the doping 

peak and the substrate band-band peak. Therefore, if it is possible to estimate an 

accurate value of ∆n for each individual sample, the more precise depth factor can be 

deduced. Nonetheless, the simple linear calibration curve between the corrected PL 

intensity of doping peak and the depth factor is established here for the remainder of 

our work (see Figure 5-4 (b) and equation (5.4)), in order to approximately 

reconstruct the doping profiles from PLS measurements. 

 

 𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (1.0886 ± 0.128)𝑍𝑓 − (0.00705 ± 0.08562) (5.4) 

 

This calibration curve is also valid only when the PLS measurement is 

conducted under conditions similar to those stated in this chapter. 

 

5.4 APPLICATION TO LOCALLY DIFFUSED SAMPLES 

5.4.1 Reconstructing doping profiles 

In this section, the validity of this characterization method is examined by 

reconstructing doping profiles of separately made locally diffused samples based on 

μ-PLS measurements alone. The process of reconstructing profiles proceeds as 

follows: 

1. Find Nsurf from the wavelength of the doping peak λdoping peak, based on 

equation (5.5) (rearranging equation (5.3) in terms of λdoping peak)   

 

 𝑁𝑠𝑢𝑟𝑓 = 𝑒𝑥𝑝(
𝜆𝑑𝑜𝑝𝑖𝑛𝑔𝑝𝑒𝑎𝑘 − 945.4

4.78
)  (5.5) 

 



  

Chapter 5 Determination of dopant density profiles of thermally boron-diffused Si 91 

 

2. Find the fraction of ionization of the estimated Nsurf obtained from step.1 at 

79 K. 

3. Measure the raw normalized PL intensity of the doping peak and divide it 

by the fraction of ionization obtained from step. 2 

4. Find zf from the corrected PL intensity Icorrected from step.3, based on 

equation (5.6) (rearranging equation (5.4) in terms of Icorrected)  

  

 𝑧𝑓 =
𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 + 0.00705

1.0886
 (5.6) 

 

Since there is no reliable way to find Np and zp from this μ-PLS analysis, 

and typically Np is close to Nsurf, set Np = Nsurf and zp = 0 in equation (5.2) 

and substituted all estimated Nsurf and zf in the simplified equation (5.7).    

  𝑁(𝑧) = 𝑁𝑠𝑢𝑟𝑓𝑒𝑥𝑝 (
−𝑧2

𝑧𝑓
2 ) (5.7) 

Figure 5-5 plots the normalized and subtracted PL spectra of locally diffused 

samples with the corresponding doping profiles, measured from large-area regions 

uniformly diffused through 1 cm × 1 cm dielectric openings. Three different profiles 

were prepared for light (labelled as LB1 in Figure 5-5), moderate (LB2) and heavy 

(LB3) doping cases, showing distinct Nsurf and diffusion depths. The corresponding 

4pp measured sheet resistances are 353, 60 and 24 Ω/sq, respectively. All measured 

values and μ-PLS estimated values are summarized in Table 5-1. 
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Figure 5-5 Normalized and subtracted PL spectra of locally diffused samples, labelled as LB1-3 with 

Nsurf and zf , with a 532 nm excitation laser at 79 K. The corresponding profiles are shown in the inset. 

 

 LB1 LB2 LB3 

λdoping peak 1156 1162 1165 

PLS estimated Nsurf (cm
-3

) 1.4 × 10
19 

4.8 × 10
19

 8.9 × 10
19

 

ECV measured Nsurf (cm
-3

) 9.9 × 10
18

 4.3 × 10
19

 8.8 × 10
19

 

PLS estimated zf (μm) 0.14 0.37 0.47 

ECV measured zf (μm) 0.24 0.39 0.53 

PLS estimated Rsh (Ω/sq) 426.3 62.5 26.6 

4pp measured Rsh (Ω/sq) 353.4 60.5 24.2 

Table 5-1 Comparison of ECV measured and μ-PLS estimated values  

 

Based on the measured profiles, we would expect three different wavelengths 

and PL intensities of the doping peaks from the PL spectra, as confirmed in Figure 

5-5. The wavelengths of the doping peaks for LB1 ~ 3 samples are about 1156, 1162 

and 1165 nm, respectively. Based on equation (5.5), the corresponding Nsurf are 

approximately 1.4 × 10
19

, 4.8 × 10
19

 and 8.9 × 10
19

 cm
-3

 and show close agreement to 

the measured values. In addition, the normalized PL intensities of the doping peak 

for each sample are about 0.12, 0.4 and 0.5, respectively. Using equation (5.6) after 
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considering the impact of incomplete ionization of the dopants on the raw PL 

intensity of the doping peak, values of zf are estimated to be about 0.14, 0.37 and 

0.47 μm. Thus, from PLS measurements alone, we can reconstruct the doping 

profiles of these diffused samples, based on our calculated values for Nsurf and zf . 

The value of zp is assumed to be zero. Substituting all parameters in equation (5.7), 

the reconstructed doping profiles are plotted in Figure 5-6, with the corresponding 

calculated sheet resistances. Although the reconstructed curves do not perfectly 

match the measured ECV curves, particularly for the very lightly doped sample, the 

agreement is nevertheless reasonable. 

 

 

Figure 5-6 The measured and reconstructed doping profiles, used for locally diffused samples (LB1 – 

3), with corresponding sheet resistances. 

 

5.4.2 Mapping of Nsurf and zf 

We conducted 2-D mappings of Nsurf (Figure 5-7) and zf  (Figure 5-8) with 2 

μm spatial resolution over locally diffused regions through lithographically-defined 

30, 40 and 50 μm diameter circular openings on dielectric masks, by measuring and 

analysing PL spectra at each point. Comparing the images row by row in each figure 

allows us to observe the effect of different profiles for LB1 ~ 3, while the effect of 

the mask size can be seen by comparing column by column. 

Once again it is possible to clearly observe three values of Nsurf for each profile 

(Figure 5-7), at about 1.2 × 10
19

, 4.8 × 10
19

 and 9 × 10
19

 cm
-3

, respectively. In 
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addition, these samples show good uniformity over the diffusion area, regardless of 

the size of the dielectric mask openings and also exhibit distinct and sharp edges. 

This is to be expected for a diffusion that occurs into a region which has itself been 

created by a well-defined mask edge and serves to demonstrate the powerful 

capability of accurate 2-D surface dopant density mapping via this μ-PLS method. 

Interestingly, the dopant density is markedly lower over a distance of a few microns 

from one edge (particularly evident for the more heavily doped samples), and it is 

attributed to gas-flow dynamics associated with the deposition of the boron-rich glass 

during the tube furnace diffusion process. 

 

 

Figure 5-7 2-D scanned maps of Nsurf, for locally diffused samples through 30, 40 and 50 μm dielectric 

mask openings. 
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Figure 5-8 2-D scanned maps of zf, for locally diffused samples through 30, 40 and 50 μm dielectric 

mask openings. 

 

In contrast to our observation of uniform surface dopant density, the maps of 

the calculated depth factor in Figure 5-8 show a notable pattern. When comparing 

light, moderate and heavy diffusions, the mapped depth factor generally increases as 

expected from the ECV profile measurements, and at the centre of the larger (50 μm 

diameter) features does give a reliable measure of diffusion depth. However, an 

unexpected and considerable variation in the implied depth factor across the region 

of the masked diffusions is observed. A decreasing depth factor value is evident near 

the edges of the diffused areas. This could, in principle, be due to the dopant 

diffusion process itself, which produces some lateral and diagonal movement of 

dopants into regions around the perimeter of the masked region.  However, the extent 

of the lateral variation observed, extending some 10 μm from the edge of the features, 

is inconsistent with impurity diffusion processes. Hence this observation is most 

likely a measurement artefact, in particular from lateral carrier diffusion, which 

results in a larger than anticipated ‘detection volume’ from which luminescence is 

detected. This results in a carrier smearing effect, where the intensity of the detected 
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PL spectra can be influenced by the undiffused region surrounding the heavily doped 

features. Although the measurement conditions, particularly the high excitation 

power, have been chosen to restrict the carrier diffusion length and confine the 

detection volume as much as possible, the precise dimensions of the detection 

volume are difficult to estimate, due to our limited knowledge of Auger 

recombination rates and carrier mobilities at these low temperatures. Nevertheless, 

this observation suggests that carrier smearing currently places a limit on the 

accuracy of this approach in determining the doping depth for small features. 

However, our approach for mapping the surface dopant density is not limited in the 

same manner, since it depends only on the position of the doping peak, rather than its 

PL intensity. 

To further investigate the effect of carrier smearing on diffusion depth profiling, 

we measured and analysed PL spectra using different excitation intensities from 5.8 

to 25 mW (equivalent to 74 to 320 kW/cm
2
). This range of excitation intensities 

results in different injection levels and therefore different Auger recombination-

limited detection volumes. This should in turn result in a difference in the carrier 

smearing effect and hence a difference in the implied diffusion depth profile near the 

edge of heavily diffused features. Figure 5-9 (a) plots the normalized PL intensity of 

the doping peak of a horizontal section across 2-D maps of the LB3-40 μm sample, 

for the three different excitation intensities. Lower excitation intensity increases the 

relative doping peak PL intensity due to different dependence of the p-n product on 

excitation intensity for the heavily diffused and lightly doped substrate layers: the 

undiffused layers respond to ∆n quadratically, while the diffused layers respond to 

∆n linearly. However, the lateral carrier diffusion length does not appear to change 

significantly under this variation of ∆n. As can be seen in Figure 5-9 (b), all three 

normalized horizontal lines are similar and do not show any significant differences 

between measurements in the vicinity of the edge of the heavily diffused feature. 

This is possibly due to very short carrier lifetime conditions in the diffused layer 

(unpassivated surface and low temperature) regardless of carrier injection levels, or 

simply that this range of injection levels does not incur much change in carrier 

lifetime. Despite the fact that this result does not clearly show the impact of lateral 

carrier diffusion on our analysis technique, this effect still seems most likely to be the 

cause of the observed reduction in calculated depth factor near the edges of heavily 
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diffused features. It is therefore concluded that the analysis method developed in this 

work can be reliably used to determine the depth factor of boron diffused surfaces 

but has limited accuracy around the edges of locally doped features. 

 

Figure 5-9 (a) Horizontal section of 2-D map of LB3-40μm sample’s doping peak PL intensity, 

measured with different excitation intensity (74, 160, 320 kW/cm
2
), and (b) normalized to 1 for the 

comparison. 

 

5.5 CHAPTER SUMMARY 

This chapter has investigated the potential use of low temperature μ-PLS 

measurements to determine the inhomogeneous Gaussian function type doping 

profiles, in terms of Nsurf and zf, for heavily boron-diffused silicon wafers. Measured 

PL spectra were normalized to the underlying Si band-band radiative peak, and the 

PL spectrum of an undiffused control wafer was subtracted to decouple the doping 

peak.  
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It was found that the wavelength of the doping peak and Nsurf have a simple 

linear relationship on a semi-log plot and a calibration curve was established which 

can be applied to estimate Nsurf in the range 5 × 10
18

 to 1 × 10
20

 cm
-3

 from the 

wavelength of the doping peak alone. Another calibration curve was established for 

determining zf, after considering the impact of incomplete dopant ionization. 

Although the normalized PL intensity of the doping peak showed a monolithically 

increasing relationship with zf, some samples, in particular those having Nsurf less 

than 10
19

 cm
-3

, showed a larger deviation from the increasing relationship. Since low 

temperature intensifies further incomplete ionization of dopant density in a range 

between 10
18

 and 10
19 

cm
-3

, effective p-n product and hence the doping peak PL 

intensity was further reduced at lower temperatures. After correcting the reduction of 

the doping peak PL intensity by a simple division of the fraction of ionization on the 

raw PL intensity of the doping peak, a better linear relationship between zf and the 

doping peak PL intensity could be established. 

It was then demonstrated, using these two calibration curves, that it is possible 

to reconstruct a boron diffusion profile based on the estimated Nsurf and zf, determined 

via PLS spectral analysis only. It is, however, noted that an accurate parameterization 

of the excess carrier density during PLS measurement would allow us to quantify zf 

with greater precision. 

2-D mappings of Nsurf and zf were also demonstrated by applying this method at 

each point with 2 μm resolution on locally diffused samples with small feature sizes 

(30, 40, 50 μm diameter). A uniform and sharply defined Nsurf is observed regardless 

of diffusion feature size, but the estimated zf varies significantly according to the 

feature size, being observed to reduce as the perimeter of a feature is approached. 

This imprecision of depth factor near feature edges is attributed to considerable 

lateral carrier diffusion, which results in carrier smearing and an unreliable 

calculation of diffusion depth within a distance of around 10 ~ 15 μm from feature 

edges.  

In the next chapter, the method presented in this chapter is applied to laser-

doped silicon.           
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Chapter 6. Characterization of laser-doped 

Si formed by different temporal pulse 

profiles 

6.1 INTRODUCTION 

In Chapter 4 and in the literature, it was shown that the process of using a laser, 

specifically when associated with dopant atoms, induces defects and dislocations in 

laser-processed silicon. Consequently, the main objective when improving laser 

processes is to suppress laser-induced damage, while maintaining heavy doping for a 

purpose of formation of ohmic contacts with metal. To achieve this objective, it is 

necessary to understand the impact and interactions of laser parameters during laser 

processes in silicon. Although many studies have reported on the impact of laser 

parameters, mainly focusing on laser pulse energy, the temporal pulse parameters, 

such as pulse duration and temporal pulse profile shape, have not been studied 

thoroughly. 

As described in 2.3.3, the laser doping process is basically laser-induced liquid 

phase diffusion. Focused laser pulse irradiation melts silicon substrate, and any 

dopant elements presented at the interface of the melt will diffuse rapidly into silicon. 

After termination of the laser pulse, the melted silicon recrystallizes epitaxially with 

the substitutional dopants. The high-speed non-equilibrium crystal regrowth enables 

more dopants to be trapped substitutionally in the lattice so they can readily exceed 

equilibrium solid solubility limits, but this high regrowth speed works negatively on 

crystallographic quality. It was reported that the degree of crystallographic damage is 

likely to increase with the velocity of the recrystallization [163, 164]. Thompson et al. 

[165] reported that an experimental value for the critical amorphization velocity in c-

Si has been measured as 15 m/s. Other experimental evidence was given that the 

grain size of laser annealed amorphous silicon (a-Si) increases as the recrystallization 

velocity decreases [166]. Another source of defects is the high stress gradient owing 

to the high temperature gradient (10
8
 ˚C/cm) and high temperature characteristics of 

laser processing [167]. 
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In order to control the recrystallization velocity, three major methods were 

suggested [168]: 1) substrate heating, 2) variation of the pulse duration, and 3) 

alteration of the thermal conductivity of the base region. The third approach, 

manipulating thermal conductivity of base region, is not ideal for most cases since it 

is not always possible to choose/change the base material/composition. Substrate 

heating is the most easily accessible approach, and its effectiveness was proven 

experimentally by Young et al [163]. Varying the pulse duration is also an easily 

accessible approach, and has been proven theoretically to be effective for reducing 

the recrystallization velocity. For the same amount of pulse energy, the 

recrystallization velocity decreases with increasing pulse duration [168]. These three 

methods basically control the thermal gradients in the material and the 

recrystallization velocity is determined primarily by the thermal gradients at the 

melt-solid interface [80, 168]. Therefore, controlling pulse duration is also effective 

to alleviate the high stress gradient owing to the high temperature gradient. However, 

this relationship is valid only when the pulse energies for different pulse durations 

are controlled below the threshold of material ablation. Above the threshold, the 

material ablation is occurred and becomes a more significant factor in determining 

crystallographic damages [156, 168]. Melting depth, and hence the doping profile of 

the laser-doped region, is also determined according to pulse duration and shape. 

Therefore, it is worthwhile investigating the impact of temporal parameters on the 

laser-doped region experimentally.    

This chapter first investigates the impact of temporal parameters, pulse 

duration and temporal profile shape on the doping profile of laser-doped silicon in 

terms of Nsurf and doping depth. The method presented in Chapter 5 is then applied to 

determine whether it is still effective for estimating the doping profile of laser-doped 

silicon. In addition, 2-D mapping of the Nsurf and zf of locally/fully laser-doped 

silicon is performed, as demonstrated in the previous chapter. The impact of 

temporal parameters on recombination properties is also investigated. It is found that 

the μ-PLS measurement could potentially be used for the quantification of 

recombination properties.  
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6.2 IMPACT OF LASER TEMPORAL PARAMETERS ON THE DOPING 

PROFILES OF LASER-DOPED SILICON 

6.2.1 Experimental details 

Low resistivity (~ 5 Ω·cm) n-type FZ crystalline silicon substrates with a 

thickness of about 400 μm were used for this study. As optical characterization tools 

were used, the sample substrate should have a planar surface. All the sample surfaces 

were already chemically etched from the manufacturer but were etched again in 25 % 

TMAH solution at 80 ˚C for 5 minutes, to ensure no surface damage and planar 

surfaces before any processing took place. Prior to depositing the dopant precursor, 

all substrates were RCA cleaned to remove any precipitates. B155 Poly boron SOD 

from Filmtronics was then deposited using a benchtop spinner at 2000 RPM for 50 

seconds. The dopant source layer was subsequently baked at 90 ˚C for 20 minutes to 

evaporate solvents.  

The employed laser system in this chapter was a frequency doubled 532 nm 

fibre laser (PyroFlex 25) which enables tuning of the pulse duration (1 to 600 ns) and 

the temporal pulse profile in 1 ns resolution. The diameter of the on-spot laser beam 

was measured to be about 16 μm and showed a Gaussian distributed spatial beam 

profile. The pulse repeat frequency was fixed at 50 kHz for all processes. In order to 

measure the sheet resistances Rsh and doping profiles, the large area of laser doping 

(10 mm × 10 mm box structures) was created by spacing circular laser beams with 4 

μm or 8 μm in both x- and y-axes. After laser irradiation, the remaining SOD on the 

surface was removed via another RCA cleaning step. The doping profiles were 

measured using the ECV technique. 

The temporal pulse profiles examined were measured via photodiode and 

converted to instantaneous power as shown in Figure 6-2 (a) and (c). Four different 

temporal profile shapes were employed to express distinctive scenarios of 

instantaneous power change while the pulse energy and duration were kept 

identically at 24 μJ and 600 ns, respectively. An isosceles triangular (ISO) waveform 

represents simple rise and drop, similar to the typical Gaussian type applicable to 

most laser systems. An inclining (INC) waveform means abrupt termination of the 

pulse after a linear increase to peak power, whereas a declining (DEC) waveform 

exemplifies a surge of peak power at the beginning of the pulse then monolithic 

decrease. The consistent power over the pulse duration is described as a square (SQR) 



  

Chapter 6 Characterization of laser-doped Si formed by different temporal pulse profiles 102 

 

waveform. When applying different pulse durations, the pulse energy which is able 

to induce a reasonable level of doping (at least ~ 100 Ω/sq) is chosen for the 

corresponding pulse duration, while taking the ISO waveform as the default shape. 

6.2.2 Results and discussion 

Determination of pulse energy for different pulse duration via Rsh 

measurement  

Figure 6-1 summarizes the measured Rsh of the large area of laser doping, 

processed with various laser parameters. First of all, heavier doping was observed as 

beams were spaced closer together. Since the spatial beam profile is Gaussian type 

with a diameter of 16 μm, beams should be placed closely enough, less than 8 μm, 

for the uniform processing of the large area. The closer location of the beams also 

means more laser energy is irradiated for the unit area which increases the melting 

time and depth with more dopant atoms, and therefore decreases Rsh. 

The laser doping inducing pulse energy for different pulse durations can be 

found in Figure 6-1 (a). Basically, for all pulse durations, at a given pulse spacing, 

Rsh decreases with pulse energy increase due to the increased melting time and depth. 

However, Rsh increases above a certain threshold, since too high a pulse energy 

evaporates or ablates the substrate rather than extending the melting cycle of laser 

doping. The window of the laser doping inducing pulse energy is wider for longer 

pulse durations as observed in Ref. [156]. This indicates that the longer pulse is less 

vulnerable to variation in pulse energy. However, the longer pulse requires a higher 

pulse energy for a similar level of Rsh, when compared to the shorter pulse. For 

example, in a case of 4 μm spacing, the pulse energies for a doped layer of about 90 

Ω/sq are 7, 11, 16 and 20 μJ for 100, 200, 400 and 600 ns pulse durations, 

respectively. 

The impact of the temporal profile shape on Rsh is shown in Figure 6-1 (b). 

Although all waveforms show decreasing Rsh with increasing the pulse energy, a 

smaller change is observed for the SQR waveform. The SQR waveform shows a 

relatively higher Rsh, particularly at higher pulse energy (24 μJ), than the other three 

triangular waveforms. 



  

Chapter 6 Characterization of laser-doped Si formed by different temporal pulse profiles 103 

 

 

Figure 6-1. The sheet resistances of the large area of laser doping, processed with (a) different pulse 

durations (100, 200, 400 and 600 ns) and (b) different temporal pulse profiles (ISO, SQR, INC and 

DEC) 

 

Doping profiles measurement 

Figure 6-2 (b) plots doping profiles of the large area of laser doping, processed 

with 4 μm spacing and different temporal profile shapes. Corresponding Rsh are 

provided for comparison. The same pulse energy of 24 μJ was given to all temporal 

profiles. Nevertheless, the resultant doping profiles and Rsh are quite different 

according to the shape of the temporal profiles. Overall, all doping profiles in Figure 

6-2 (b) have relatively deep depth > 1.5 μm regardless of the shape because of the 

long pulse duration of 600 ns. It is notable that both the ISO and the INC waveforms 

give almost identical doping profiles and hence a similar Rsh, whereas the SQR 

waveform gives a significantly higher Rsh and lower Nsurf. This is attributed to the 

peak power of the temporal pulse profile, showing the same peak power of around 80 
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W for the ISO and the INC waveforms, but only 40 W for the SQR waveform. 

Although the highest peak power of around 130 W is observed in the INC waveform, 

the corresponding Nsurf is slightly lower than the Nsurf of the ISO and the INC 

waveform. It is speculated that such a high peak power is likely to incur slight 

ablation in the sub-surface of the doped layers, thus leading to a decreased Nsurf. 

Doping profiles created by different pulse durations with 4 μm spacing are 

plotted in Figure 6-2 (d). Since the pulse energy is adjusted according to the pulse 

duration, based on the previous Rsh measurement, it is hard to clearly distinguish the 

impact of peak power and pulse duration. In general, if a longer pulse with a lower 

peak power is applied, a deeper depth with a lighter Nsurf is created in the doping 

profile. In other words, a shallower depth with a heavier Nsurf is produced when the 

temporal profile has a shorter duration with a higher peak power. This means that the 

Nsurf and the depth of doping profile of a laser-doped region, maintaining a target Rsh, 

can be tailored by manipulating the pulse temporal profile.  

 

 

Figure 6-2 (a,c) Temporal pulse profiles and (b,d) corresponding doping profiles measured via ECV 

profiling when applying (a,b) different shapes (ISO, SQR, INC and DEC), or applying (c,d) different 

pulse durations from 100 to 600 ns. Measured sheet resistances are provided for the comparison. 
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6.3 RECONSTRUCTING DOPING PROFILES OF LASER-DOPED 

SILICON 

A brief examination in the PL spectra of laser-doped samples gave the 

impression that the wavelength and PL intensity of doping peak of laser-doped 

silicon also follow the same trend – linear relationship between the wavelength/PL 

intensity of the doping peak and Nsurf/zf  – as was observed from the thermally 

diffused samples. Hence, the two calibration curves (equations (5.3) and (5.4)) 

established in Chapter 5 were initially attempted to estimate the Nsurf and zf of the 

laser-doped samples. However, the reconstructed doping profiles were not accurate, 

showing great discrepancy compared to the measured ECV curves. This indicates 

that the demonstrated relationship between the PL components and doping profile 

defining key parameters is valid qualitatively for any doped samples, but has a 

different numerical relationship depending on the process and circumstances (see 

also 6.6). Therefore, new calibration curves for laser-doped silicon are established 

using the large area of laser doping samples used for Rsh and ECV measurements in 

the previous section. 

 A total of 15 different doping profiles were used, with Nsurf ranging from 2.97 

× 10
18

 cm
-3

 to 4.36 × 10
19

 cm
-3

, and with a range of different doping depths between 

0.6 μm and 2.5 μm. The same μ-PLS system and measurements set-ups in Chapter 5 

were applied for all measurements exception of excitation power. The power is 

slightly increased to 12 mW for clear spectra measurements, in particular for heavily 

laser-damaged samples. 

6.3.1 Estimating Nsurf and zf of laser-doped silicon 

For laser-doped silicon samples, the relationship between the wavelength of the 

doping peak and Nsurf is plotted in Figure 6-4 (a), and is described by 

 𝜆𝑑𝑜𝑝𝑖𝑛𝑔𝑝𝑒𝑎𝑘 = (5.39 ± 0.96)ln(𝑁𝑠𝑢𝑟𝑓) + (916.43 ± 41.75) (6.1) 

 

Error bars indicate one standard deviation of measured wavelengths across the 

large area of laser doping. A linear relationship between the wavelength and Nsurf was 

observed but is not very solid compared to that of the thermally diffused samples as 

shown in Figure 5-2 (d). This is possibly due to the irregular condition of the surface 

after laser processing. The optics of the laser system does not homogenize a beam 
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spatially, and thus form a typical Gaussian spatial beam. As a result, the region 

processed with an isolated laser beam can have spatially different surface 

transformation as well as different levels of doping. Thus, the large area of laser 

doping was created by overlapping beams by more than 50 % to ensure uniform 

irradiation over the large area. Nevertheless, the surface of the large area feature 

contains traces of beams across the region. This indicates that the surface is not only 

not doped homogeneously, but also influences the luminescence measurement due to 

unexpected optical scattering or trapping at the irregular surface. 

The function type of the doping profile of laser-doped silicon is examined 

using the same method in 5.3.2. The coefficient of determination R
2
 of the Gaussian 

and ERFC functions was calculated for all 15 laser-doped samples in Figure 6-3. All 

measured profiles show a better fit to ERFC, therefore zf  was fitted from ERFC for 

all samples. 

  

 

Figure 6-3 The coefficient of determination R
2 
of two modelled functions (Gaussian and ERFC) for 15 

laser-doped samples. An R
2
 of 1 indicates that the modelled functions perfectly fit the measured points. 

 

The second calibration curve for the doping peak PL intensity is plotted as a 

function of zf in Figure 6-4 (b) and is formulated in equation (6.2). Here again, a 

better linear relationship is established after considering the impact of incomplete 

ionization of dopants on doping peak PL intensity at low temperature. 

 𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (0.599 ± 0.104)𝑍𝑓 − (0.117 ± 0.122) (6.2) 
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Figure 6-4 (a) Measured wavelengths of the doping peaks as a function of Nsurf (b) Normalized PL 

intensity of the doping peak as a function of zf without correction (black), and including a correction 

for the effect of incomplete ionization on the PL intensity (red). 

 

Both calibration curves are valid only for laser-doped silicon with an ERFC 

type doping profile and when the PLS measurement is conducted under conditions 

similar to those stated in this chapter. 

6.3.2 Reconstructed doping profiles of laser-doped silicon 

To verify the calibration curves established in the previous section, the doping 

profile was reconstructed from μ-PLS measurements alone. Using equation (6.1), 

Nsurf was estimated from the measured wavelength of the doping peak. After the 

normalized PL intensity of the doping peak was corrected with the fraction of 

ionization of this estimated Nsurf, it was used to calculate zf based on equation (6.2). 

Substituting all estimated parameters in equation (5.1) with assumption of zp = 0, the 

reconstructed doping profiles were plotted as shown in Figure 6-4, in which four 
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distinctive doping profiles of laser-doped samples are shown with their 

corresponding sheet resistances. 

 

 

Figure 6-5 Measured and reconstructed doping profiles of four distinctive laser-doped samples, with 

their corresponding sheet resistance. 

 

The reconstructed curves show some mismatches to the measured ECV curves. 

Although all measured ECV curves are mathematically close to ERFC in the fitting 

simulation, the doping profile actually contains partially different gradients. In 

particular, an accumulation of dopants is observed within about 300 nm near the 

surface region, which forms a steeper gradient in the profile. This was not observed 

in excimer laser-doped silicon (see Figure 6-16 (a)). This phenomenon is due to the 

segregation effect at the solid-liquid interface during the laser-induced melting and 

solidification process [86, 169, 170]. During epitaxial recrystallization, dopant 

density Cs in the solid just formed at any moment from the liquid-solid interface is 

determined by the interface segregation coefficient ki of the dopant (defined as the 

ratio of the dopant concentration in the solid Cs to that in the liquid Cl at the liquid-

solid interface). Dopant density in the solid is then given as Cs = kiCl and an amount 

of (1-ki)Cl is rejected into the nearest liquid layer. This process is continued until the 

solid-liquid interface reaches near the surface and the excessive dopants remaining in 

the liquid are considered to have accumulated to the surface [86]. Such surface 

accumulation therefore only occurs when ki is less than unity, as schematically 

represented in Figure 6-6.  
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Figure 6-6 Schematic illustration of the surface accumulation of dopants due to the segregation effects 

for (a) ki = 1 and (b) ki < 1 after laser doping. The figure is taken from Ref. [170]. 

 

Values of ki depend not only on dopant elements, but also on the 

recrystallization velocity [86, 169, 171]. When the recrystallization velocity is so 

slow that a quasi-equilibrium condition is maintained, the value of ki becomes close 

to the value of the equilibrium segregation coefficient k0. On the other hand, when 

the recrystallization velocity is significantly high (> 2.5 m/s), applicable in a typical 

laser doping process using a few tens nanosecond pulses, this value becomes much 

higher than the equilibrium segregation coefficient k0. Table 6-1 lists the equilibrium 

value k0 and its high value ki for some dopant elements under typical nanosecond-

pulsed laser doping. For boron in silicon, the value of ki under fast regrowth velocity 

is very near unity and hence leads to no boron accumulation at the surface. However, 

its equilibrium value k0 is known to be 0.8, which decreases further with increasing 

boron concentration in the silicon melt [172]. As a result, observation of the surface 

accumulation in the measured doping profiles (Figure 6-2 and Figure 6-5) indicates 

that there was relatively slow recrystallization. 
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Dopant 

element 

Equilibrium segregation 

coefficient k0 

Interface segregation 

coefficient ki 

B 0.8 0.9 – 1.0 

P 0.35 0.9 – 1.0 

As 0.3 0.9 – 1.0 

Sb 0.023 0.8 – 1.0 

Ga 0.008 0.15 – 0.3 

In 0.0004 0.1 – 0.2 

Bi 0.0007 0.25 – 0.42 

Table 6-1 Values of k0 and ki for some dopant elements in silicon [169]. 

 

Surface accumulation results in a less accurate estimation of Nsurf and zf in 

addition to the impact of bad sample surface morphology. However, despite the non-

ideal estimation of parameters, the discrepancy between the reconstructed profiles 

and the measured ECV profiles is not big in terms of sheet resistance. The sheet 

resistances of the reconstructed profiles were calculated and compared to the 4pp 

measured sheet resistances as shown in Figure 6-7. Notably, they show reasonably 

good agreement.  

 

 

Figure 6-7 Comparison between the 4pp measured Rsh and the μ-PLS estimated Rsh. 
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6.4 2-D MAPPING OF NSURF AND ZF FOR THE FULL AREA AND 

LOCALLY LASER-DOPED SILICON 

Figure 6-8 shows maps of Nsurf and zf, for the large area laser-doped samples 

with the corresponding Rsh, measured via a 4pp and calculated using estimated Nsurf 

and zf via the μ-PLS analysis method. Firstly, the results confirmed the anticipated 

laterally inhomogeneous doping of the large area laser-doped sample from the 

fluctuating Nsurf and zf over the processed region. Secondly, the impact of pulse 

spacing on the large area process (pulse overlapping) was observed when comparing 

between Figure 6-8 (a,c) and Figure 6-8 (b,d), even though two different temporal 

profiles were applied. In Figure 6-8 (d), the intervals of the depth factors correspond 

to the placements of the pulses. Relatively deep depth factors are repeated 

approximately every 8 μm on both axes, as single pulses were placed over a large 

area with this spacing. However, 4 μm spacing (Figure 6-8 (d)) shows a relatively 

similar level of depth factors without a clear pattern of pulse location over the region.  

 

 

Figure 6-8 2-D scanned maps of Nsurf and zf, for the large area laser-doped samples, processed with 

(a,c) 200 ns ISO waveform and 4 μm beam spacing, with (b,d) 600 ns SQR waveform and 8 μm 

spacing. 
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However, such patterns are not observable in the maps of Nsurf with both 4 and 

8 μm spacing and in which it is hard to discern any other clear pattern. This is 

possibly due to the different responses of Nsurf and zf to a single beam process. Figure 

6-9 (c) and (d) shows that a deep zf corresponds to the centre of a beam. Heavy Nsurf, 

meanwhile, does not accord with the centre of a beam, as shown in Figure 6-9 (a) 

and (b). Interestingly, lighter surface doping occurs at the centre of a beam while the 

deep doping depth is maintained. 

The impact of the temporal profile described in 6.2 is well illustrated in the 

maps of locally laser-doped features. In Figure 6-9 (a) and (c), it is observed that the 

temporal profile with a shorter duration and a higher peak power (i.e. the 100 ns ISO 

waveform, 120 W) creates a heavier Nsurf with a shallower zf. On the other hand, a 

lighter Nsurf with a deeper zf is created when applying a temporal profile with a longer 

duration and lower peak power. 

 

 

Figure 6-9 2-D scanned maps of Nsurf and zf, for locally laser-doped samples, processed with (a,c) 100 

ns ISO waveform and 6 repeat pulses, with (b,d) 600 ns SQR waveform and 6 repeat pulses. 

 

All of the Nsurf and zf mapping results of locally laser-doped features are 

summarized in Figure 6-10. In order to be able to summarize these in one plot, 
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averaged values within the doped region are used. Error bars mean one standard 

deviation of varying value within the doped region. Corresponding Rsh is also 

calculated using the average values of Nsurf and zf  to show the doping level of each 

laser parameter combination comprehensively. In general, the impact of temporal 

profiles on the doping profiles described in 6.2 is well presented in this figure. 

Additionally, it is possible to observe the impact of repeat pulses, which induces a 

deeper doping depth. However, this increase in doping depth is only observed up to 3 

pulses. After that, the depth seems to be saturated.  

 

Figure 6-10 Estimated Nsurf, zf and Rsh as a function of repeat pulse numbers, for locally laser-doped 

features processed with different pulse durations (a,c,e) and different pulse shapes (b,d,f). Average 

value (bar graph) and one standard deviation (error bar) across the doped region are used for this plot. 

The sheet resistance is calculated using average values of Nsurf and zf   
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6.5 RECOMBINATION PROPERTIES OF LASER-DOPED SILICON 

In Chapter 4, by comparing the distinctive defect-related PL spectra at specific 

locations within the micron-scale laser-processed region, it was found that the main 

recombination source of the laser-processed region is at the interface of the melt-

unmelted region. However, this analysis enables only a relative comparison of the 

recombination properties among the investigated specimens, so this remains a 

qualitative characterization that could not be used to evaluate an absolute level of 

recombination properties. In this section, this limitation is improved by correlating 

the quantified recombination parameter J0 with the normalized defect-related PL 

spectra, which demonstrates the potential of the μ-PLS method for the quantification 

of recombination properties.   

6.5.1 Sample preparation 

In addition to the large area laser-doped structure, we created 10 × 10 mm
2
 

squares of circular laser beam arrays with an array pitch of 60 μm for the μ-PLS 

analysis, and for extracting the recombination parameter J0,laser of the locally laser-

doped features. The same temporal profiles and pulse energies (Figure 6-2) were 

applied with a number of repeat pulses from 1 to 6. The surface of the localized 

feature was then passivated by depositing a 20 nm Al2O3 layer on both sides of 

wafers via thermal atomic layer deposition (ALD). A Beneq TFS-200 ALD reactor 

was used with a trimethylaluminium (TMA) precursor and water for the oxidant. The 

deposition temperature was kept at 200 ˚C. The passivation effect of the as-deposited 

Al2O3 layer was activated by annealing at 425 ˚C for 30 mins in forming gas. Al2O3 

was chosen to minimize the post-annealing effect of the laser damage and dopant 

redistribution, which is observed in a high-temperature oxidation process after the 

laser doping process [44], as the Al2O3 film is made at relatively low temperatures 

(also see 6.6). In addition, the optical properties of Al2O3 deposited silicon are very 

close to that of bare silicon, so it is not necessary to consider its optical impact on PL 

emission.        

6.5.2 Quantified recombination parameter J0,laser of laser-doped silicon 

The PL image-based analytic approach is employed to quantify the 

recombination properties of locally laser-doped features (see 2.4.2). All the 

uncalibrated PL images of samples were converted to J0-images as shown in Figure 
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6-11. We then determined the recombination parameter J0,laser of the locally doped 

regions for each laser parameter within a 6 × 6 mm
2
 sized region inside the laser-

doped boxes, to minimize the influence of carrier smear at the edges. 

 

 

Figure 6-11 Extracted J0,laser image and the arrangement of the large area and locally laser-doped 

structures with various laser parameters, applying 200 ns ISO waveforms with 3 different pulse 

energies (9, 11 and 13 μJ) and repeat pulses from 1 to 6. The placement of the inductive coil for PCD 

measurement is indicated by the dashed circle. 

 

Figure 6-12 summarizes all values of recombination parameter J0,laser of the 

localized features processed with different temporal profiles as a function of a 

number of repeat pulses. It was possible to confirm that the temporal pulse profile 

not only affected the doping profile, but also the recombination properties.  

Firstly, J0,laser values in the range between 500 and 3000 fA/cm
2 

were achieved 

by applying various combinations of temporal parameters. The lower value, J0,laser < 

1000 fA/cm
2
 was observed to increase pulse duration. When comparing the shortest 

and longest ISO waveforms, the overall values of J0,laser were lower for the longest 

ISO waveform, in spite of heavier doping (heavier Nsurf and deeper zf). This indicates 

experimentally that the long pulse is a very effective way to reduce the 

recrystallization velocity and hence lower the recombination properties of laser-

processed silicon.  

Secondly, temporal pulse shape is also quite an influential factor in 

determining recombination properties. In Figure 6-12 (a), given the same pulse 
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energy and duration for all shapes, the INC and the DEC waveforms give a higher 

J0,laser than the other two waveforms. This is likely to be due to the abrupt change of 

instantaneous power. Although both INC and DEC waveforms show dramatic 

transitions of power from zero to peak and vice versa, the INC waveform would be 

more detrimental in terms of thermal profile. For the INC waveform, the temperature 

gradient, particularly after the termination of the pulse, would be steeper since there 

is an instantaneous halt in power, more so than for the other waveforms which have a 

gradual decrease in power. Therefore, this could increase the recrystallization 

velocity and cause more crystallographic damage. In the case of the DEC waveform, 

an explosive surge of power from zero to peak in addition to a higher peak value than 

that of the other waveforms, is likely to induce vaporization of the substrate rather 

than melting in the sub-surface. However, the subsequent gradual decrease in power 

over a long period would reduce the thermal gradient and hence decrease the 

recrystallization velocity, which possibly compensates for the damage induced by the 

early peak power. Although the SQR waveform also has an abrupt change in power, 

the degree of power change is not very large, and the power is kept constant over a 

long period. Therefore, a smoother thermal gradient and relatively slow 

recrystallization velocity are expected. 

Interestingly, it was observed that J0,laser decreases significantly after 4 pulses 

for all parameter combinations. It is widely believed and has been shown, that 

multiple pulses incur more laser damage [149]. However, Xu et al [156] showed the 

opposite result – damage recovery after multiple pulses – particularly with long pulse 

duration. Some other authors also have reported that the damaged surface recovers 

by irradiating it with additional laser pulses [173-175]. However, it is not clear why 

it recovered specifically after 4 pulses in our samples. 
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Figure 6-12 Recombination parameter J0,laser as a function of the number of repeat pulses, for locally 

laser-doped samples, processed with (a) different shapes of temporal profiles, and with (b) different 

pulse durations. 

 

6.5.3 Qualitative μ-PLS measurement of the recombination properties of laser-

doped silicon 

As described in 3.5 and Chapter 4, well-known D-lines and PL band over the 

1200 nm range represent radiative recombination from dislocations/defects in silicon. 

Therefore, PL components over the 1200 nm range could be used for evaluating 

recombination properties. However, to enable fast spectra measurements over 

hundreds of points and normalization to the Si BB radiative peak, only PL spectra of 

a limited wavelength range (1100 ~ 1300 nm) were analysed in this chapter. In this 

wavelength range, only PL spectra in 1200 ~ 1300 nm can be used for recombination 

analysis but still include PL emissions from intrinsic dislocations, D3 (1290 nm) and 

D4 (1230 nm). Since it is hard to decouple the D4 line from the doping peak phonon 
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replica (see Figure 3-7), PL band between 1260 and 1300 nm is defined as a ‘defect 

band’ in this analysis. 

When mapping the doping peak wavelengths and PL intensities of locally 

laser-doped features, the defect band was also measured and mapped over the region, 

as shown in Figure 6-13. It was observed that the distribution of the defect band 

corresponds to the beam intensity profile as in the zf characteristic. This result 

accords with the general fact that higher laser intensity induces more damage. The 

damage recovery effect after multiple pulses (reduction of J0,laser after 4 pulses in 

Figure 6-12), is also presented in the defect band map  (Figure 6-13 (e) and (f)). 

Figure 6-14 displays the distribution of the defect band within the doped region 

for all the localized features investigated. It is notable that the trend of the defect 

band to change according to the pulse profile is very similar to that of the quantified 

parameter J0,laser (Figure 6-12 and Figure 6-14). The defect band tends to decrease as 

the pulse duration increases. Very high defect band signals are observed when 

processed with the INC or DEC waveform. The reduction of the defect band after 4 

pulses is also shown.   
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Figure 6-13 2-D scanned maps of wavelengths, normalized PL intensities of the doping peak and the 

defect band, for locally laser-doped features, processed with the DEC waveform, 24 μJ, 2 or 6 repeat 

pulses. 
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Figure 6-14 Normalized defect bands of all locally laser-doped features investigated in this chapter, 

processed with (a) different pulse shape and (b) different pulse duration. Box plots display the 

distribution of data measured within the doped region. The central rectangle spans the first quartile to 

the third quartile, and its mid-line means median. Other symbols are as follows: ˗ : Min/Max, × : 99 %, 

□ : Mean.   

 

6.5.4 Correlation between J0 and defect-related PL spectra 

Based on the findings in the previous section, the  quantified recombination 

parameter was correlated with the defect band as shown in Figure 6-15, and the 

average value of the defect band was plotted as a function of J0,laser. Although they 

do not have a perfect linear relationship, the defect band increases monolithically 

with J0,laser in a range between 100 fA/cm
2
 and 5000 fA/cm

2
. This indicates that the 

recombination properties could be quantified using defect-related PL signals alone. 

However, there are couple of things which must be considered. 

Firstly, the defect band or defect-related PL spectra is only able to represent 

radiative recombination which has occurred via dislocations or defects. This means 
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that other non-radiative recombination cannot be assessed. Secondly, analysis based 

on PL intensity is likely to include more uncertainty. As noted in 6.3.1, a laser-doped 

sample has an irregular surface morphology, which possibly causes unexpected 

optical scattering or trapping during the PL measurement. This would be worse for a 

sample which is processed with high laser fluence/more repeat pulses. Lastly, PL 

spectra analysis for recombination properties and even for doping level is not 

effective when it is heavily damaged. This is described in more detail in the next 

section.  

  

 

Figure 6-15 The averaged defect band as a function of J0,laer, when processed with (a) different pulse 

shape or (b) different pulse duration. Number of repeat pulses is labelled only for the temporal profiles 

inducing the lowest J0,laser. 
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6.6 IMPACT OF HIGH DEFECT-RELATED PL SPECTRA 

In the previous section, it was mentioned that heavily damaged samples are not 

applicable to PL spectra analysis. This section describes the reasons based on 

experimental results. 

In this thesis, a new approach is proposed to estimate the doping profiles of 

thermally or laser-doped silicon samples, utilizing the unique characteristics of the 

PL spectra of inhomogeneously doped silicon along the depth. When looking at the 

PL spectra of those samples (Figure 3-7 and Figure 5-2), there are always two very 

clear peaks, the Si BB radiative and doping peak, in conjunction with very low 

defect-related PL spectra over the 1200 nm wavelength range. The characteristics of 

the doping peak are closely related to the degree of BGN and doping depth, so those 

can be used to quantify dopant profiles. However, as demonstrated in Chapter 4, it is 

hard to utilize such characteristics when a significantly high defect-related PL band 

is exhibited. Such a high defect-related PL signal sometimes screens the doping peak 

making it hard to decouple. Moreover, even if it is possible to decouple the doping 

peak from the measured PL spectra, the doping peak PL intensity does not reflect the 

anticipated doping depth. For example, it is well known that multiple pulses create 

deeper doping depth, so the doping peak PL intensity is expected to increase with the 

number of repeat pulses. However, this expectation is rarely observed and even the 

opposite trend is shown when a high defect-related PL band exists. 

To further investigate the impact of high defect-related PL band, two sets of 

samples were prepared. Large area 10 × 10 mm
2
 laser-doped regions were made on 

TMAH-etched high resistivity n-type substrates using the same SOD and excimer 

laser set-ups as in Chapter 4. After the laser doping process, residual SOD films on 

the sample surface were removed via RCA cleaning. A dry thermal oxidation at 1000 

˚C followed by annealing in N2 was applied to one of the two sets. A grown oxide 

film was then removed in HF solution for ECV and μ-PLS measurements. 
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Figure 6-16 Doping profiles of excimer laser-doped silicon samples, processed with 2.5/3.5 J/cm
2
 and 

1/3 repeat pulses (a) without and (b) with subsequent oxidation process. Corresponding PL spectra are 

depicted in (c) and (d), respectively. 

 

Figure 6-16 (a) plots the doping profiles of excimer laser-doped samples 

without a high-temperature oxidation process. Corresponding PL spectra show 

distinguishable doping peaks as well as high defect-related PL spectra, as depicted in 

Figure 6-16 (c). As the laser pulse fluence and repeat pulse increase, the depth of the 

doping profile increases while the surface dopant density decreases, as has been 

reported by many authors [38, 39, 104]. However, it is not reflected in doping peak 

PL intensity and wavelength.  Normalized PL intensities of the doping peaks in the 

figure do not correspond to measured doping depth. The wavelength of the doping 

peak also does not accord with surface dopant density. For instance, for the sample 

processed with 3.5 J/cm
2
 and a single pulse, ECV measurements show the lowest 

Nsurf and second deepest zf, whereas the PL spectra measurements show the highest 

doping peak PL intensity and wavelength, among all the measured samples.  

The high-temperature process has re-distributed dopant atoms, as shown in 

Figure 6-16 (b). Existing dopants are diffused further into the substrate, forming a 

slightly lower Nsurf and deeper depth than before the high-temperature process, the 

so-called ‘drive-in’ effect. The function type of the doping profiles becomes close to 
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Gaussian type. Remarkable changes are also observed in the measured PL spectra. A 

significant reduction in defect-related PL spectra is observed for all samples, which 

means thermal annealing is effective in reducing laser-induced damages. 

Furthermore, the discrepancy between the ECV results and PL spectra results is 

mitigated considerably, although it is still not perfect. It seems that relatively a high 

defect band, compared to thermally diffused samples and long-pulse laser-doped 

samples, still negatively affects the characteristics of the doping peak. If there are a 

significant number of defects/dislocations, all generated excessive carriers do not 

recombine via band-band radiative recombination. Many of them are likely to 

recombine through deep-levels (dislocation and defect levels) within the band-gap, 

and are then represented as PL spectra at a longer wavelength > 1200 nm (smaller 

than the band-gap energy). Furthermore, more non-radiative recombination processes, 

which cannot be represented in the PL spectra, will increase. As a result, the doped 

region containing many defects/dislocations shows an underestimated PL intensity of 

the doping peak. Therefore, the level of defect-related PL spectra is very crucial in 

determining the accuracy of the doping peak analysis. A low defect-related PL signal 

is required for accurate estimation of dopant density.     

 

6.7 CHAPTER SUMMARY 

This chapter has investigated the impact of temporal pulse profiles on the 

doping profiles and recombination properties of laser-doped silicon samples. It has 

also demonstrated, that inhomogeneous ERFC-type doping profiles can be estimated 

using the μ-PLS analysis method developed previously in Chapter 5 for heavily 

laser-doped p-type silicon. 

Depending on the temporal pulse profiles, different doping profiles are created, 

which means that doping profiles can be tailored in more detail by manipulating the 

temporal profile. For example, a higher peak power with shorter pulse duration 

induces the doped region to have a higher Nsurf with a shallower zf.  Relatively low 

J0,laser < 1000 fA/cm
2
 was achieved using a longer pulse, verifying experimentally 

that pulse duration increase is a very effective way to reduce the recrystallization 

velocity, and hence minimize laser-induced damages. In addition, dopant 

accumulation near the sub-surface owing to the segregation effect is further evidence 
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of slow recrystallization velocity in the long pulse laser doping process. Furthermore, 

the temporal profile shape and change of instantaneous power over time influences 

the recombination properties of the laser-doped region, even though the same pulse 

energy/duration is given. It is recommended that abrupt power transitions within a 

few nanoseconds should be avoided to form fewer recombination active regions. In 

addition, the lower value of J0,laser after 4 repeat pulses indicates the potential for 

laser damage annealing using multiple long pulse irradiation.    

The method for estimating doping profiles presented in Chapter 5 is also 

effective for laser-doped silicon but requires new calibration curves to be established 

based on a set of laser-doped silicon samples. Compared to the thermally diffused 

samples, the reconstructed doping profile of laser-doped silicon is less precise. A 

non-homogenized laser beam and its overlapping cause irregular surface morphology 

and laterally inhomogeneous doping, which reduces the accuracy of calibration 

curves and PL measurements. Dopant surface accumulation also negatively affects 

the accuracy of the calibration curves and makes it hard to clearly determine the 

function type of the doping profile. Nevertheless, the reconstructed profile shows 

reasonable agreement with the ECV measured curves in terms of sheet resistance. 

A number of 2-D mappings of Nsurf and zf were also performed for the large 

area and locally laser-doped features. The laterally inhomogeneous doping and 

specific patterns owing to regular beam spacing are clearly demonstrated from maps 

of the full area laser-doped feature. In addition, different map patterns between Nsurf
 

and zf are found by observing maps of the locally laser-doped features. The spatial 

beam profile corresponds to the distribution of zf, but not Nsurf.  

The defect-related PL component (in this chapter PL spectra in a range of 1260 

~ 1300 nm were defined as a ‘defect band’), is correlated with the quantified 

recombination parameter J0,laser, showing that the defect band increases 

monolithically with J0,laser. It demonstrates that the μ-PLS analysis method could be 

used to quantify not only dopant density, but also recombination properties. However, 

accurate quantification requires low defect-related PL spectra.   
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Chapter 7. Advanced laser processing using 

a stack of a-Si:H(i) and a-Si:B 

7.1 INTRODUCTION 

The laser doping process typically includes the deposition of the dopant 

precursor, followed by its removal after laser irradiation. For a complete cell 

structure, further extra steps (in addition to the typical laser doping process) are 

required for the formation of contacts between locally heavily doped regions and 

metals, including the deposition of passivating dielectric films and its openings. 

Another approach, which does not have these extra steps, is laser-fired contact, 

created by a laser through a dielectric film and an aluminium (Al) layer which forms 

locally Al alloyed p-type silicon [176]. This technique requires precise control of the 

laser power to avoid metal expulsion and ablation due to the lower evaporation 

temperature of aluminium than silicon [177]. The most advanced approach is 

PassDop technology [41], which provides an excellent passivation layer as well as 

the dopant precursor for the laser doping. This approach is attractive since the dopant 

precursor is constitutionally part of the solar cell structure and is not required to be 

removed subsequent to laser doping, therefore the cell fabrication steps can be 

minimized. 

This chapter investigates the effectiveness of layer stacks of intrinsic 

amorphous silicon (a-Si:H(i)) and boron- (for p-type) rich amorphous silicon (a-Si:B) 

for producing multi-purpose films capable of providing an excellent passivation and 

dopant source for effective localized laser doping. Thin films of a-Si:H(i) are already 

well-known for providing outstanding surface passivation [178, 179], having been 

successfully applied in many of the highest efficiency silicon solar cells produced to 

date [33]. An additional layer of a-Si:B acts as the dopant precursor for laser doping, 

introducing only silicon and boron atoms into the locally melted region during the 

laser process without any additional/detrimental impurities.  

It has been demonstrated previously that sputtered a-Si:H films are capable of 

excellent surface passivation [180] and doped film [181], and likewise that boron-

doped a-Si can be deposited by PECVD [182]. However, for reasons of equipment 
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availability and reliability, this chapter focuses on intrinsic a-Si films produced by 

PECVD and boron-doped a-Si films produced by sputtering. Ultimately, a single 

machine co-optimised for both passivation and dopant precursor depositions will be 

the most attractive from an industrial processing point of view.   

 

7.2 SAMPLE PREPARATION 

High resistivity (~ 100 Ω·cm) p-type FZ crystalline silicon substrates with a 

thickness of approximately 200 μm were used for this study. All samples were first 

etched in 25 % TMAH solution at 80 ˚C for 5 minutes to remove surface damage, 

and RCA cleaned and dipped in a 1 % HF solution prior to the deposition of a-Si 

films. 

An intrinsic amorphous silicon passivation layer (a-Si:H(i)) was deposited on 

both sides of the substrates via a dual mode Roth and Rau AK 400 PECVD system. 

The silane (SiH4) and helium (He) were supplied at 20 and 500 sccm flow rates 

respectively, the excitation power was 10 W and the deposition temperature was kept 

at 400 ˚C. To investigate the effect of changing the thickness of a-Si:H(i), different 

thickness (5, 10 and 20 nm) were deposited by varying the deposition time. 

The dopant precursor layer (a-Si:B) was deposited on the single side of 

PECVD a-Si:H(i) deposited substrates by co-sputtering pure silicon and boron 

targets using an ATC-2400-V AJA sputter system. Argon (Ar) was used as the 

plasma source, and the sputter chamber pressure was kept at 4 mTorr. The thickness 

of a-Si:B was kept at 50 nm, but different percentages of B in a-Si:B were employed 

to study the effect of the concentration of dopant atoms in a-Si on passivation and 

laser doping. The deposition power for the silicon target was kept consistent, 

whereas the deposition power for the boron target and the co-sputtering time were 

adjusted to provide 10 vol% and 30 vol% of B in a 50 nm a-Si:B layer. 

After the deposition of the films, the τeff was measured with a Sinton WCT120 

PCD instrument [183]. 

A KrF 248 nm excimer laser, with a homogenous-rectangular beam and 25 ns 

FWHM pulse duration, was then employed to locally heat and melt the stack of a-

Si:H(i)/a-Si:B coated substrate, thus introducing dopants into the melt prior to 
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recrystallization. Single laser pulses were applied, with a range of fluences from 1 to 

4 J/cm
2
. To characterize the level of the laser doping, small areas of 6 × 2 mm

2
 were 

laser-processed by overlapping 502 × 502 μm
2
 beam size laser pulses. The resultant 

sheet resistance of the doped region was determined by a 4pp measurement using the 

appropriate calibration factors for the rectangular doped areas created. In addition, 

qualitative characterization on the laser-doped regions was conducted via the μ-PLS 

analysis. We also briefly evaluated the recombination properties of the locally laser-

processed regions via the uncalibrated PL images. 

       

7.3 SURFACE PASSIVATION OF THE AMORPHOUS SILICON STACK   

The passivation effect of the stack of a-Si:H(i) and a-Si:B on top is observed by 

measuring τeff, determined at an excess minority carrier density of 1×10
15 

cm
-3

, prior 

to laser processing as shown in Figure 7-1. Before depositing the a-Si:B layer (i.e. 

after a-Si:H(i) only), a maximum lifetime of around 10 ms was observed for the 20 

nm a-Si:H(i) coated samples in as-deposited condition. However, immediately prior 

to depositing the a-Si:B films, we found that the lifetime of all samples, which had 

been stored at room temperature for five days, approximately halved, indicating 

considerable degradation of the surface passivation. Effective lifetime was however 

found to be completely restored after low temperature annealing as reported in Ref. 

[184], and so this same annealing condition was applied to films subsequent to a-

Si:B deposition.  

The single side deposition of an a-Si:B layer causes significant degradation of 

the passivation quality for all intrinsic layer thicknesses, although this was much 

more severe in the case of the thinner a-Si:H(i) and higher concentration of B in a-

Si:B. For the 20 nm a-Si:H(i) case, the lifetime still declines due to the a-Si:B layer, 

but a reasonable lifetime of around 4.5 ms is maintained regardless of the boron 

concentration. The corresponding recombination parameter J0 is approximately 2.5 

fA/cm
2
 and was derived by fitting the injection dependent τeff measurement of the 

sample to full 3-D device simulations using Quokka [127] as shown in Figure 7-2. 
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Figure 7-1 Measured τeff of a-Si:H(i)/a-Si:B coated samples after a-Si:H(i) deposition only, subsequent 

to 5 days ageing and doped layer deposition, and subsequent to various low temperature annealing 

conditions. All τeff values were extracted at the excess carrier density of 1×10
15

cm
-3

. 

 

 

Figure 7-2 The injection dependent τeff curve for a 20 nm a-Si:H(i) / 30 vol%B a-Si:B coated sample 

showing J0 of 2.5 fA/cm
2
, derived from Quokka simulation. 

 

Doped a-Si layers have been previously reported to be able to act as a capping 

layer for the passivating a-Si:H(i) layer [184]. However, a-Si:B capping layers used 

in this experiment showed the opposite effect, since the film is not optimised for 

passivation purposes. The current results conclude that a passivating amorphous 

layer of around 20 nm thickness is a minimum requirement in order to avoid 

passivation degradation owing to an a-Si:B top layer that has not been optimised for 
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passivation. Further optimisation of film deposition conditions may result in thinner 

intrinsic silicon films being found to be resistant to degradation after the application 

of doped layers. 

 

7.4 LASER-INDUCED DOPING AND DAMAGE THROUGH VARIOUS 

COMPOSITIONS OF THE A-SI STACK 

7.4.1 The sheet resistance measurement  

The sheet resistance of laser-processed regions under a variety of stack 

compositions are demonstrated in Figure 7-3. It is worth noting that a wide range of 

doping levels are observed for the range of laser pulse fluences 1 to 4 J/cm
2
 and the 

dopant fraction in the dopant precursor layer, with a sheet resistance of around 270 

Ω/sq maximum and around 25 Ω/sq minimum. For a range of 5 to 20 nm thickness of 

a-Si:H(i), the resulting sheet resistances are impacted by the thickness only at low 

fluence (1 J/cm
2
). Above 2 J/cm

2
, the sheet resistances are determined from the 

boron concentration in the a-Si:B layer regardless of the thickness of a-Si:H(i). 

Obviously, a higher concentration of dopants enables heavier doping. Increasing 

fluence shows generally lower sheet resistance, but above a fluence of 3 J/cm
2
 the 

value of sheet resistances reaches an apparent minimum, around 60 Ω/sq (10 vol% B 

film) or 25 Ω/sq (30 vol% B film). 

 

 

Figure 7-3 Measured sheet resistance as a function of fluence for regions laser-doped from a-Si:H(i)/a-

Si:B films. The thickness of the a-Si:H(i) layer was varied from 5 nm to 20 nm. On top of the a-Si:H(i) 

layer, a 50 nm a-Si:B was deposited with 10 vol% or 30 vol% B. 
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7.4.2 μ-PLS measurement 

Figure 7-4 plots the normalized PL spectra of a variety of laser-doped samples 

through 20 nm a-Si:H(i)/ a-Si:B, as measured at the centre of the laser-processed 

region. The presence of a-Si:H(i) is also confirmed from the PL spectra in a range of 

900 ~ 1300 nm [185], measured on the passivated surface. Damage and defects 

caused by laser doping are represented in the PL spectra in the wavelength range of 

1200 ~ 1500 nm, and heavy doping via the doping peak. Interestingly, the increase in 

the fluence shows relatively lower defect-related PL spectra, opposite to the trend 

shown in Chapter 4. This may be owing to the laser annealing effect on amorphous 

silicon layers, where laser pulses at low fluence (~ 1 J/cm
2
) transform the amorphous 

silicon layers into polycrystalline layers containing a relatively high number of 

crystal discontinuities and defects, with little or no melting and recrystallization of 

the underlying substrate [186]. In contrast, the higher fluences result in deeper melt 

zones, and possibly also some direct ablation of the amorphous film, which is 

subsequently recrystallized from the defect-less crystalline substrate.  Hence, the 

resultant luminescent signal of the laser-annealed amorphous silicon layer, and its 

relationship to laser pulse fluence, is apparent in the longer wavelength ‘damage 

spectrum’ region shown in Figure 7-4 [151]. In addition, even though the heavy 

doping is confirmed from sheet resistance measurements, the evidence for it does not 

stand out via μ-PLS measurements. This is because of the high defect-related PL 

spectra in the longer wavelength range > 1200 nm (see 6.6). This prevents an 

accurate quantification of the dopant density/doping depth.  

Comparing the measured PL spectra to the spectra on the TMAH-etched 

substrate shown in Chapter 4, it appears that their defect-related spectra are quite 

similar. This is consistent with our findings that the short pulse laser process on 

rough surfaces induces more laser damage.  
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Figure 7-4 Normalized PL spectra on laser-doped samples through (a) 20 nm a-Si:H/ 50 nm 10 vol% 

B a-Si:B or (b) 20nm a-Si:H/ 50nm 30 vol%B a-Si:B with a fluence range of 1 ~ 4 J/cm
2
 at the centre 

region. Excitation is achieved with a 532 nm laser, and the substrate temperature is 79 K. The 

spectrum of an unprocessed crystalline Si and a 20nm a-Si:H/a-Si:B coated silicon sample is plotted 

for comparison. 

 

7.4.3 Uncalibrated PL image measurement 

In this section, a simple evaluation of the local recombination properties of 

laser-doped regions is performed. Figure 7-5 shows the uncalibrated PL images of 

the laser-doped samples through a stack of 20 nm a-Si:H(i) and 50 nm a-Si:B, with 

different fractions of doped regions. This is achieved by creating a regular 

rectangular array of 40 × 40 µm
2
 laser-doped ‘spots’ at different pitches. The image 

was taken after forming gas annealing at 250˚C for 15 minutes, since a significant 

improvement in effective lifetime has been observed after such an annealing process, 

as shown in Figure 7-1. Table 7-1 summarizes the average PL counts for each of the 

fractionally laser-doped arrays, with an estimated decrease in open-circuit voltage 

∆Voc that could be expected in the application of photovoltaic devices. The 

estimation of ∆Voc is conducted based on equation (7.1) derived by Glatthar et al. 

[187]:  
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 ∆𝑉𝑜𝑐 = 𝑉𝑇ln(
𝐼𝑙𝑎𝑠𝑒𝑟
𝐼𝑝𝑎𝑠𝑠

) (7.1) 

 

where, VT is thermal voltage, around 26 mV at room temperature, Ipass is PL 

counts in the passivated area, and Ilaser is PL counts in the laser-doped region. 

Assuming that all other factors are optimized, and that device efficiency was 

theoretically limited by surface recombination alone, then a Voc drop of about 36 mV 

could be expected in the case of the 0.5 % locally doped area. Given that J0 of 2.5 

fA/cm
2
, as shown in Figure 7-2, is generally capable of yielding cells with very high 

Voc, with a-Si passivated silicon solar cells having been reported with open-circuit 

voltages of around 750 mV [188, 189], the results obtained in this work for locally 

laser-doped structures are consistent with fabrication of cells having Voc of 700 mV 

or over, despite the relatively high recombination activity being observed at the 

locally laser-doped regions. 

 

 

Figure 7-5 Uncalibrated PL images of laser-doped samples through (a) 20 nm a-Si:H/ 10 vol% B a-

Si:B or (b) 20 nm a-Si:H/ 30 vol%B a-Si:B after forming gas annealing at 250˚C for 15 minutes. 

Different fractions of the laser-doped regions are employed, 0.5%, 1.5 % and 5 %. 

 

 
Doped 

fraction 
3 J/cm

2 ∆Voc 

(mV) 
2 J/cm

2 ∆Voc 

(mV) 

(a) 

0 % 65531 0 

N/A 
0.5 % 15944 -36.7 

1.5 % 6028 -62.0 

5 % 1697 -94.9 

(b) 

0 % 65525 0 65525 0 

0.5 % 9350 -50.6 14996 -38.3 

1.5 % 2290 -87.2 3640 -75.1 

5 % 819 -113.9 1440 -99.2 

Table 7-1 The average of PL counts and estimated Voc decrease in laser-doped regions shown in 

Figure 7-5 
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7.5  CHAPTER SUMMARY 

In this chapter, it was demonstrated that a stack of a-Si:H(i) and a-Si:B is able 

to provide both good surface passivation and a sufficient amount of dopant for the 

laser doping process. The best result found was for a 20 nm a-Si:H(i) with 30 vol% B 

a-Si:B, showing τeff (∆n = 1 × 10
15

 cm
-3

) of 4.5 ms (corresponding J0 of 2.5 fA/cm
2
) 

in passivated regions, and a minimum Rsh of 25 Ω/sq in the laser-doped regions on 

high resistivity p-type FZ c-Si substrates. 

A good passivation effect is attributed to the a-Si:H(i) layer and requires at 

least around a 20 nm thickness of it to avoid passivation degradation owing to an a-

Si:B top layer that has not been optimised for passivation. The fraction of dopant 

atoms in the dopant precursor of the a-Si:B layer determines the maximum level of 

doping. Using μ-PLS, the presence of a-Si layers on the passivated region is 

confirmed by observing PL spectra in a range of 900 ~ 1300 nm.  However, it is not 

possible to utilize the μ-PLS method to quantify dopant density and recombination 

properties since a significantly high broad defect-related PL band is observed for all 

process parameters. Local recombination analysis shows the potential for achieving 

solar cells with high Voc, with results for the 0.5 % localized doping fraction being 

consistent with voltages above 700 mV.
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Chapter 8. Conclusion 

8.1 KEY FINDINGS AND CONTRIBUTIONS 

This thesis has presented a novel method for the characterization of localized 

features utilizing low temperature μ-PLS technique. The method developed 

overcomes many of the limitations associated with conventional characterization 

techniques. It allows for a very effective and rapid characterization process for 

analysing localized features formed by either traditional thermal or emerging laser 

process techniques. In particular, the advantages and capabilities of this method will 

contribute to the more practical study of laser parameters in laser-silicon interaction 

and thus enable the optimization of laser processing for cost-effective fabrication of 

high-efficiency silicon solar cells. In this concluding chapter, the capabilities of the 

proposed method are briefly summarised and notes the method’s contribution to 

research on newly discovered or re-identified factors that impact on laser processing. 

The primary advantage of the μ-PLS method is that it is able to do spatial 

characterization in micron-scale without the necessity of having a specific test 

structure. Utilizing high resolution and the well-established dislocation/defect 

analysis of μ-PLS measurements at low temperature (~ liquid nitrogen temperature 

80 K), the impact of various laser parameters on the formation of dislocations and the 

doped layer were investigated according to a position within the laser-processed 

region, in particular at specific locations such as at the boundary/edge of processed 

and unprocessed regions (see Chapter 4). Key findings of Chapter 4 include: 

 The formation of laser-induced dislocation was confirmed by observing 

the well-known D3/D4 lines, but its density was expected to be low owing 

to the narrow and low intensity of those two lines. 

 There was no evidence of the incorporation of secondary defects and 

impurities (no D1/D2 lines) during the laser melting cycle. 

 Given the same laser parameters, laser processing incorporating dopants 

creates more defects than laser processing without dopant inclusion. A 

laser only processed region showed specific low PL peaks (D3/D4 lines) 
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whereas a laser-doped region showed the broad defect-related PL spectrum 

in the range 1200 ~ 1500 nm. 

 The defect-related PL spectrum increases with pulse fluence/repeat pulses. 

 A major source of crystallographic degradation in laser doping occurs at 

the boundary between the melted and unmelted region. Significantly 

higher defect-related PL spectra were observed at the pulse edge region 

and pulse overlapped region. 

 Substrate surface preparation can be an important factor impacting on the 

quality of the laser-doped silicon. A lower defect signal is generally 

observed for a smoother surface sample. 

Another capability of the μ-PLS method is quantification of the dopant density 

of localized features. The band structure of silicon can be clearly identified via low 

temperature PL spectrum measurement. It includes not only detection of the 

dislocation/defect-related deep-levels within the band-gap, but also band-gap 

shrinkage due to heavy doping. If the absorption depth of the excitation laser is deep 

enough, the inhomogeneously doped silicon layer emits two distinguishable PL 

peaks, corresponding to the intrinsic silicon layer and doped layer, respectively. Thus, 

we decoupled the doping-related PL peak, defined as the ‘doping peak’ in this thesis, 

from the measured PL spectra, and observed its characteristics depending on the 

doping level. This was demonstrated using a set of thermally diffused silicon samples 

having various Gaussian type doping profiles, as discussed in Chapter 5. The 

wavelength and PL intensity of the doping peak were correlated to the doping 

profile-defining key parameters, Nsurf and zf , to develop a new method of estimating 

the Gaussian type doping profile based on the measured PL spectra alone. Key 

findings of Chapter 5 include:  

 There is a linear relationship between the wavelength of the doping peak 

and Nsurf on a semi-log plot. The surface dopant density Nsurf in the range 5 

× 10
18

 to 1 × 10
20

 cm
-3 

can be estimated from the wavelength of the doping 

peak in the range from 1150 to 1170 nm. 

 Incomplete dopant ionization, enhanced due to low temperature incurs a 

reduction in the PL intensity of the doping peak, for Nsurf in the range 

between 10
18 

and 10
19

 cm
-3

. 
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 The corrected PL intensity of the doping peak, after consideration of the 

fraction of incomplete ionization, exhibits a good linear relationship with zf, 

which enables the estimation of zf values from the doping peak PL 

intensity. 

 Successful estimation of the doping profile was demonstrated by 

reconstructing it using estimated Nsurf and zf from the doping peak analysis. 

 The spatial distribution of the Nsurf and zf of localized features was 

characterized by conducting 2-D mappings, showing that Nsurf is uniformly 

distributed and is sharply defined, regardless of the feature size, whereas zf 

is affected by the feature size and becomes ambiguous as it approaches the 

feature edge. 

 Chapter 6 demonstrated that the μ-PLS-based dopant density quantification 

method is also effective for locally laser-doped features, but showed a different 

numerical relationship between the doping peak wavelength/PL intensity and Nsurf/zf, 

compared to that of the thermally diffused samples in Chapter 5. Moreover, laterally 

inhomogeneous doping and a distorted surface morphology due to the overlapping of 

the non-homogenized laser beams, result in a less accurate estimation. Additionally, 

the impact of temporal pulse parameters, such as pulse duration and temporal pulse 

profile shape, on laser doping was investigated in terms of the doping profile and 

recombination properties. The key findings in Chapter 6 include: 

 Laser pulse peak power and pulse duration determines Nsurf and zf of the 

doping profile. Higher pulse peak power associated with shorter pulse 

duration results in the doped region having a higher Nsurf with a shallower 

zf. On the other hand, lower pulse peak laser power associated with longer 

pulse duration results in lower Nsurf with deeper zf. 

 Long pulse laser processing generally results in the formation of fewer 

recombination active regions. Relatively low values of J0,laser < 1000 

fA/cm
2
 were achieved with increasing pulse duration, verifying 

experimentally that pulse duration increase is a very effective way to 

reduce the recrystallization velocity. Dopant surface accumulation in the 

doping profile of the long pulse laser-doped samples also support that the 

long pulse laser leaded slow recrystallization. 
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 Avoiding abrupt power transitions reduces the formation of recombination 

active regions. At the same pulse energy and duration, the recombination 

parameter value J0,laser increases when the pulse profile has an extreme 

power transition within a few nanoseconds (i.e. zero to peak and vice 

versa). 

 Recombination properties are able to be quantified via μ-PLS analysis. The 

normalized PL spectrum in the range of 1160 ~ 1200 nm, defined as the 

‘defect band,’ increase with the quantified recombination parameter J0,laser 

in the range between 500 fA/cm
2
 and 5000 fA/cm

2
. 

 The accurate quantification of doping profiles and recombination 

properties via the μ-PLS method is not applicable to a heavily damaged 

sample. Any samples having significantly high defect-related PL spectrum, 

over 1200 ~ 1500 nm, show big discrepancies between the estimated 

Nsurf/zf  from the doping peak analysis and the ECV measured Nsurf /zf.  In 

addition, monotonously broad and high defect-related PL spectra are 

observed regardless of J0,laser when J0,laser > 5000 fA/cm
2
. 

In the last chapter of this thesis, the application of a stack of a-Si:H(i)/a-Si:B as 

the dopant precursor for advanced laser doping was attempted. This demonstrated 

that the a-Si stack is able to effectively provide both excellent passivation effects and 

a pure dopant source, without additional/detrimental impurities. 

In conclusion, this thesis has presented a high-resolution spatial 

characterization method, eminently suitable for laser processing, which is capable of 

quantifying the doping profile and recombination properties of localized features 

using low temperature μ-PLS. The method developed in this thesis could be utilised 

to investigate the major sources of degradation in laser doping and the impact of 

laser temporal parameters. 

 

8.2 SUGGESTIONS FOR FUTURE WORK 

This section summarizes the possibilities for further work to identify problems 

and/or limitations in improving and expanding the capability of this μ-PLS method. 

Suggested studies for laser processing are also listed. 
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 A comprehensive study should be undertaken on the PL spectra of n-type 

doped silicon. Compared to boron p-type doped silicon, n-type doped 

silicon shows a very ambiguous luminescent response to the BGN effect. 

For the same level of heavy doping (> 10
19 

cm
-3

), boron doped silicon 

shows very clear responses, like peak shifting and broadening, whereas 

phosphorus doped silicon shows only marginal change. Therefore, in this 

thesis the method was limited to boron doped p-type silicon. 

 The dopant profiling in this method is limited to either the Gaussian 

function type or the ERFC type doping profiles. Since this method 

assumes that the function type is known or at least clearly esimated, the 

accuracy of the estimation decreases when the function type is unknown or 

ambiguous. Further work is needed to develop an advanced approach 

which enables real profiling regardless of the function type of the doping 

profile. 

 Beam homogenization of the green laser system is required for more 

accurate quantification of the doping profile and recombination properties 

of laser-doped silicon in Chapter 6. Even if the beam is homogenized, laser 

processes still induce surface transformation due to the melting and 

solidification process, as shown in Chapter 4. However, it was not possible 

to homogenize a beam for the green laser system here due to equipment 

limitations.  

 It would be productive to have further investigation into the laser 

annealing effect. Reduction in the recombination parameters J0 after 

multiple irradiations of long pulses was observed in this thesis, indicating 

the potential for laser-induced damage recovery via additional laser pulses. 

While such a phenomenon has both been observed and contradicted in the 

existing literature, in each case the studies were somewhat limited in scope. 
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